Suppr超能文献

通过MnO-ZnS p-n异质结实现锂硫电池中多硫化物的平滑“吸附-扩散-转化”

Achieving a smooth "adsorption-diffusion-conversion" of polysulfides enabled by MnO-ZnS p-n heterojunction for Li-S battery.

作者信息

Chen Zhiyuan, Wu Jie, Yang Yunfei, Yan Lijing, Gao Xuehui

机构信息

Key Laboratory of the Ministry of Education for Advanced Catalysis Material, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.

College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.

出版信息

J Colloid Interface Sci. 2024 Jul 15;666:322-330. doi: 10.1016/j.jcis.2024.04.001. Epub 2024 Apr 2.

Abstract

The commercial application of lithium-sulfur batteries is primarily impeded by the constant shuttling of soluble polysulfides and sluggish redox kinetics. Nowadays, the discovery of the heterojunction, which combines materials with diverse properties, offers a new perspective for overcoming these obstacles. Herein, a functional coating separator for the lithium-sulfur battery is designed using a MnO-ZnS p-n heterojunction with a spontaneous built-in electric field (BIEF). The MnO nanowire provides suitable adsorption capacity for polysulfides, while the abundant reactive sites brought by ZnS ensure efficient conversion. Moreover, the BIEF significantly facilitates the migration of electrons and polysulfides at the MnO-ZnS interface, enabling a smooth "adsorption-diffusion-conversion" reaction mechanism. By serving as both the adsorption module and catalytic sites, this BIEF allows batteries utilizing separators modified with MnO-ZnS heterojunction to achieve an impressive initial capacity of 1511.1 mAh g at 0.1C and maintain a capacity decay rate of merely 0.048% per cycle at 2.0C after 1000 cycles. Even when increasing sulfur loading to 9.4 mg cm in lean electrolyte (5.4 μL mg), the battery still exhibits an ultrahigh areal capacity of 6.0 mAh cm after 100 cycles.

摘要

锂硫电池的商业应用主要受到可溶性多硫化物不断穿梭和缓慢的氧化还原动力学的阻碍。如今,异质结的发现将具有不同性质的材料结合在一起,为克服这些障碍提供了新的视角。在此,设计了一种用于锂硫电池的功能性涂层隔膜,其采用具有自发内建电场(BIEF)的MnO-ZnS p-n异质结。MnO纳米线为多硫化物提供了合适的吸附能力,而ZnS带来的丰富活性位点确保了高效转化。此外,BIEF显著促进了电子和多硫化物在MnO-ZnS界面的迁移,实现了顺畅的“吸附-扩散-转化”反应机制。通过同时作为吸附模块和催化位点,这种BIEF使使用MnO-ZnS异质结改性隔膜的电池在0.1C时实现了令人印象深刻的1511.1 mAh g初始容量,在2.0C下1000次循环后容量衰减率仅为每循环0.048%。即使在贫电解质(5.4 μL mg)中将硫负载增加到9.4 mg cm,电池在100次循环后仍表现出6.0 mAh cm的超高面积容量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验