Suppr超能文献

监测瑞士污水中的 ESBL- :2021 年 11 月至 2022 年 11 月期间的人群携带情况。

Monitoring ESBL- in Swiss wastewater between November 2021 and November 2022: insights into population carriage.

机构信息

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.

出版信息

mSphere. 2024 May 29;9(5):e0076023. doi: 10.1128/msphere.00760-23. Epub 2024 Apr 12.

Abstract

UNLABELLED

Antimicrobial resistance (AMR) poses a global health threat, causing millions of deaths annually, with expectations of increased impact in the future. Wastewater surveillance offers a cost-effective, non-invasive tool to understand AMR carriage trends within a population. We monitored extended-spectrum β-lactamase producing (ESBL-) weekly in influent wastewater from six wastewater treatment plants (WWTPs) in Switzerland (November 2021 to November 2022) to investigate spatio-temporal variations, explore correlations with environmental variables, develop a predictive model for ESBL- carriage in the community, and detect the most prevalent ESBL-genes. We cultured total and ESBL- in 300 wastewater samples to quantify daily loads and percentage of ESBL-. Additionally, we screened 234 ESBL- isolates using molecular methods for the presence of 18 ESBL-gene families. We found a population-weighted mean percentage of ESBL- of 1.9% (95% confidence interval: 1.8-2%) across all sites and weeks, which can inform ESBL- carriage. Concentrations of ESBL- varied across WWTPs and time, with higher values observed in WWTPs serving larger populations. Recent precipitations (previous 24/96 h) showed no significant association with ESBL-, while temperature occasionally had a moderate impact ( < 0.05, correlation coefficients approximately 0.40) in some locations. We identified , , and as the predominant ESBL-gene families. Our study demonstrates that wastewater-based surveillance of culturable ESBL- provides insights into AMR trends in Switzerland and may also inform resistance. These findings establish a foundation for long term, nationally established monitoring protocols and provide information that may help inform targeted public health interventions.

IMPORTANCE

Antimicrobial resistance (AMR) is a global health threat and is commonly monitored in clinical settings, given its association with the risk of antimicrobial-resistant infections. Nevertheless, tracking AMR within a community proves challenging due to the substantial sample size required for a representative population, along with high associated costs and privacy concerns. By investigating high resolution temporal and geographic trends in extended-spectrum beta-lactamase producing in wastewater, we provide an alternative approach to monitor AMR dynamics, distinct from the conventional clinical settings focus. Through this approach, we develop a mechanistic model, shedding light on the relationship between wastewater indicators and AMR carriage in the population. This perspective contributes valuable insights into trends of AMR carriage, emphasizing the importance of wastewater surveillance in informing effective public health interventions.

摘要

未加说明

抗生素耐药性(AMR)对全球健康构成威胁,每年导致数百万人死亡,并预计未来影响会更大。污水监测是一种具有成本效益且非侵入性的工具,可了解人群中抗生素耐药性的携带趋势。我们每周从瑞士的六个污水处理厂(WWTP)的污水中监测扩展谱β-内酰胺酶产生菌(ESBL-),以调查时空变化,探索与环境变量的相关性,为社区中的 ESBL-携带建立预测模型,并检测最常见的 ESBL-基因。我们培养了 300 个污水样本中的总 ESBL-和 ESBL-,以量化每日负荷和 ESBL-的百分比。此外,我们使用分子方法对 234 个 ESBL-分离株进行了筛查,以检测 18 个 ESBL-基因家族的存在。我们发现,所有地点和所有周的人群加权平均 ESBL-百分比为 1.9%(95%置信区间:1.8-2%),这可以提供有关 ESBL-携带的信息。ESBL-的浓度在 WWTP 之间和时间上有所不同,服务于较大人群的 WWTP 值较高。最近的降水(前 24/96 小时)与 ESBL-无显著关联,而温度偶尔在某些地点具有中等影响(<0.05,相关系数约为 0.40)。我们确定 、 和 为主要的 ESBL-基因家族。我们的研究表明,基于培养的可培养 ESBL-的污水监测提供了对瑞士 AMR 趋势的深入了解,并可能为耐药性提供信息。这些发现为长期、全国性的监测协议奠定了基础,并提供了可能有助于指导有针对性的公共卫生干预的信息。

意义

抗生素耐药性(AMR)对全球健康构成威胁,由于其与抗微生物药物耐药感染的风险相关,因此通常在临床环境中进行监测。然而,由于需要具有代表性的人群的大量样本,以及高昂的相关成本和隐私问题,跟踪社区内的 AMR 具有挑战性。通过研究污水中产生扩展谱β-内酰胺酶的菌的高分辨率时间和地理趋势,我们提供了一种替代方法来监测 AMR 动态,与传统的临床环境重点不同。通过这种方法,我们建立了一个机械模型,揭示了污水指标与人群中 AMR 携带之间的关系。这种观点为 AMR 携带趋势提供了有价值的见解,强调了污水监测在为有效的公共卫生干预提供信息方面的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52a5/11328990/d00220634ae0/msphere.00760-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验