Suppr超能文献

用于工业阴离子交换膜水电解槽的原位电化学快速诱导高活性γ-NiOOH物种

In Situ Electrochemical Rapid Induction of Highly Active γ-NiOOH Species for Industrial Anion Exchange Membrane Water Electrolyzer.

作者信息

Wang Fu-Li, Tan Jin-Long, Jin Zheng-Yang, Gu Chao-Yue, Lv Qian-Xi, Dong Yi-Wen, Lv Ren-Qing, Dong Bin, Chai Yong-Ming

机构信息

State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.

出版信息

Small. 2024 Aug;20(33):e2310064. doi: 10.1002/smll.202310064. Epub 2024 Apr 12.

Abstract

Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (O→OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.

摘要

受析氧反应(OER)中强氧化环境和缓慢重构过程的限制,设计具有高活性和稳定性的快速自重构电催化剂对于推动阴离子交换膜(AEM)水电解槽至关重要。在此,基于沉淀 - 溶解平衡,通过简单的原位电化学氧化策略构建了微量Fe/S修饰的氢氧化镍(Fe/S-NiOOH/NF)纳米线。原位表征技术表明,Fe和S的成功引入导致晶格无序并促进了有利的羟基捕获,加速了高活性γ-NiOOH的形成。密度泛函理论(DFT)计算也证实,Fe和S的掺入优化了电子重新分布和d带中心,降低了速率决定步骤(O→OOH)的能垒。得益于独特的电子结构和中间体吸附,Fe/S-NiOOH/NF催化剂仅需345 mV的过电位即可在120小时内达到1000 mA cm的工业电流密度。同时,组装的AEM水电解槽(Fe/S-NiOOH//Pt/C - 60°C)在2.24 V的电池电压下可提供1000 mA cm的电流,在71%的平均能量效率下运行100小时。总之,这项工作为未来氢经济的高性能AEM电催化剂提出了一种快速自重构策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验