Xia Lu, Jiang Wulyu, Hartmann Heinrich, Mayer Joachim, Lehnert Werner, Shviro Meital
Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
Faculty of Mechanical Engineering, RWTH Aachen University, 52062 Aachen, Germany.
ACS Appl Mater Interfaces. 2022 May 4;14(17):19397-19408. doi: 10.1021/acsami.2c01302. Epub 2022 Apr 22.
Nickel (poly)sulfides have been widely studied as anodic catalysts for alkaline water electrolysis owing to their diverse morphologies, high catalytic activities in the oxygen evolution reaction (OER), and low cost. To utilize low-cost and high-efficiency polysulfides with industry-relevant cycling stability, we develop a Ni-rich NiS/Ni(OH)/NiOOH catalyst derived from NiS/NiS nanocubes. Ni-rich NiS/Ni(OH)/NiOOH shows improved OER catalytic activity (η = 374 mV@50 mA cm) and stability (0.1% voltage increase) after 65 h of a galvanostatic test at 10 mA cm compared with commercial Ni/NiO and hydrothermally synthesized Ni(OH) (both show η > 460 mV@50 mA cm along with 4.40 and 1.92% voltage increase, respectively). A water-splitting electrolyzer based on Pt/C||AF1-HNN8-50||NiS/Ni(OH)/NiOOH exhibits a current density of 1800 mA cm at 2.0 V and 500 h high-rate stability at 1000 mA cm with negligible attenuation of only 0.12 mV h. This work provides an understanding of truly stable species, intrinsic active phases of Ni polysulfides, their high-rate stability in a real cell, and sheds light on the development of stable chalcogenide-based anodic electrocatalysts for anion exchange membrane water electrolysis (AEMWE).
镍(多)硫化物因其多样的形态、在析氧反应(OER)中较高的催化活性以及低成本,而被广泛研究作为碱性水电解的阳极催化剂。为了利用具有与工业相关循环稳定性的低成本、高效率多硫化物,我们开发了一种由NiS/NiS纳米立方体衍生而来的富镍NiS/Ni(OH)/NiOOH催化剂。与商业Ni/NiO和水热合成的Ni(OH)(两者在50 mA cm时η均>460 mV,电压分别增加4.40%和1.92%)相比,富镍NiS/Ni(OH)/NiOOH在10 mA cm的恒电流测试65小时后,表现出改善的OER催化活性(η = 374 mV@50 mA cm)和稳定性(电压增加0.1%)。基于Pt/C||AF1-HNN8-50||NiS/Ni(OH)/NiOOH的水电解槽在2.0 V时电流密度为1800 mA cm,在1000 mA cm时具有500小时的高倍率稳定性,衰减可忽略不计,仅为0.12 mV h。这项工作有助于理解真正稳定的物种、镍多硫化物的本征活性相、它们在实际电池中的高倍率稳定性,并为开发用于阴离子交换膜水电解(AEMWE)的稳定硫族化物基阳极电催化剂提供了思路。