Suppr超能文献

加热牛奶的原理验证研究中用于选择和鉴定标记肽的 Python 工作流程。

Python workflow for the selection and identification of marker peptides-proof-of-principle study with heated milk.

机构信息

GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany.

Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technical University Berlin, Gustav Meyer Allee 25, 13355, Berlin, Germany.

出版信息

Anal Bioanal Chem. 2024 Jun;416(14):3349-3360. doi: 10.1007/s00216-024-05286-w. Epub 2024 Apr 12.

Abstract

The analysis of almost holistic food profiles has developed considerably over the last years. This has also led to larger amounts of data and the ability to obtain more information about health-beneficial and adverse constituents in food than ever before. Especially in the field of proteomics, software is used for evaluation, and these do not provide specific approaches for unique monitoring questions. An additional and more comprehensive way of evaluation can be done with the programming language Python. It offers broad possibilities by a large ecosystem for mass spectrometric data analysis, but needs to be tailored for specific sets of features, the research questions behind. It also offers the applicability of various machine-learning approaches. The aim of the present study was to develop an algorithm for selecting and identifying potential marker peptides from mass spectrometric data. The workflow is divided into three steps: (I) feature engineering, (II) chemometric data analysis, and (III) feature identification. The first step is the transformation of the mass spectrometric data into a structure, which enables the application of existing data analysis packages in Python. The second step is the data analysis for selecting single features. These features are further processed in the third step, which is the feature identification. The data used exemplarily in this proof-of-principle approach was from a study on the influence of a heat treatment on the milk proteome/peptidome.

摘要

近年来,对整体食品分析的研究有了显著的发展。这也导致了数据量的增加,使我们能够比以往任何时候都能获得更多关于食品中有益健康和不利成分的信息。特别是在蛋白质组学领域,软件被用于评估,但它们没有为独特的监测问题提供具体的方法。一种额外的、更全面的评估方法是使用编程语言 Python。它通过大规模质谱数据分析的庞大生态系统提供了广泛的可能性,但需要针对特定的特征集和研究问题进行定制。它还提供了各种机器学习方法的适用性。本研究的目的是开发一种从质谱数据中选择和识别潜在标记肽的算法。工作流程分为三个步骤:(I)特征工程,(II)化学计量数据分析,和(III)特征识别。第一步是将质谱数据转化为一种结构,这使得现有的数据分析软件包可以在 Python 中应用。第二步是用于选择单个特征的数据分析。这些特征在第三步中进一步处理,即特征识别。在这个原理验证方法中,示例数据来自一项关于热处理对牛奶蛋白质组/肽组影响的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd82/11106092/7d93dadfd570/216_2024_5286_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验