Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Neuro Oncol. 2024 Aug 5;26(8):1496-1508. doi: 10.1093/neuonc/noae054.
BACKGROUND: With the recognition that noncancerous cells function as critical regulators of brain tumor growth, we recently demonstrated that neurons drive low-grade glioma initiation and progression. Using mouse models of neurofibromatosis type 1 (NF1)-associated optic pathway glioma (OPG), we showed that Nf1 mutation induces neuronal hyperexcitability and midkine expression, which activates an immune axis to support tumor growth, such that high-dose lamotrigine treatment reduces Nf1-OPG proliferation. Herein, we execute a series of complementary experiments to address several key knowledge gaps relevant to future clinical translation. METHODS: We leverage a collection of Nf1-mutant mice that spontaneously develop OPGs to alter both germline and retinal neuron-specific midkine expression. Nf1-mutant mice harboring several different NF1 patient-derived germline mutations were employed to evaluate neuronal excitability and midkine expression. Two distinct Nf1-OPG preclinical mouse models were used to assess lamotrigine effects on tumor progression and growth in vivo. RESULTS: We establish that neuronal midkine is both necessary and sufficient for Nf1-OPG growth, demonstrating an obligate relationship between germline Nf1 mutation, neuronal excitability, midkine production, and Nf1-OPG proliferation. We show anti-epileptic drug (lamotrigine) specificity in suppressing neuronal midkine production. Relevant to clinical translation, lamotrigine prevents Nf1-OPG progression and suppresses the growth of existing tumors for months following drug cessation. Importantly, lamotrigine abrogates tumor growth in two Nf1-OPG strains using pediatric epilepsy clinical dosing. CONCLUSIONS: Together, these findings establish midkine and neuronal hyperexcitability as targetable drivers of Nf1-OPG growth and support the use of lamotrigine as a potential chemoprevention or chemotherapy agent for children with NF1-OPG.
背景:由于认识到非癌性细胞是脑肿瘤生长的关键调节因子,我们最近证明神经元驱动低级别神经胶质瘤的起始和进展。使用神经纤维瘤病 1 型 (NF1) 相关视神经通路胶质瘤 (OPG) 的小鼠模型,我们表明 Nf1 突变诱导神经元过度兴奋和中期因子表达,这激活了支持肿瘤生长的免疫轴,使得高剂量拉莫三嗪治疗可减少 Nf1-OPG 增殖。在此,我们执行了一系列互补实验,以解决与未来临床转化相关的几个关键知识空白。
方法:我们利用一组自发发生 OPG 的 Nf1 突变小鼠来改变生殖细胞和视网膜神经元特异性中期因子表达。使用携带几种不同 NF1 患者衍生种系突变的 Nf1 突变小鼠来评估神经元兴奋性和中期因子表达。使用两种不同的 Nf1-OPG 临床前小鼠模型来评估拉莫三嗪对体内肿瘤进展和生长的影响。
结果:我们证实神经元中期因子对于 Nf1-OPG 的生长是必要且充分的,证明了种系 Nf1 突变、神经元兴奋性、中期因子产生和 Nf1-OPG 增殖之间的强制性关系。我们表明抗癫痫药物(拉莫三嗪)特异性抑制神经元中期因子的产生。与临床转化相关的是,拉莫三嗪可预防 Nf1-OPG 的进展,并在停药后数月内抑制现有肿瘤的生长。重要的是,拉莫三嗪使用儿科癫痫临床剂量可消除两种 Nf1-OPG 株的肿瘤生长。
结论:这些发现共同确定中期因子和神经元过度兴奋是 Nf1-OPG 生长的可靶向驱动因素,并支持将拉莫三嗪用作 NF1-OPG 儿童的潜在化学预防或化疗药物。
J Neurosci Res. 2018-4-28
Eur Rev Med Pharmacol Sci. 2023-6
Neuro Oncol. 2015-5
Cancer Cell. 2025-1-13
J Natl Cancer Inst. 2025-4-1
J Neurodev Disord. 2024-8-31
Nature. 2023-11
Neurooncol Adv. 2022-12-18
Front Oncol. 2023-1-9
Nat Commun. 2021-12-8