Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
Environ Res. 2024 Jul 1;252(Pt 2):118902. doi: 10.1016/j.envres.2024.118902. Epub 2024 Apr 10.
Anthropogenic influences significantly modify the hydrochemical properties and material flow in riverine ecosystems across Asia, potentially accounting for 40-50% of global emissions. Despite the pervasive impact on Asian rivers, there is a paucity of studies investigating their correlation with carbon dioxide (CO) emissions. In this study, we computed the partial pressure of CO (pCO) using the carbonate equilibria-based model (pCOSYS) and examined its correlation with hydrochemical parameters from historical records at 91 stations spanning 2013-2021 in the Ganga River. The investigation unveiled substantial spatial heterogeneity in the pCO across the Ganga River. The pCO concentration varied from 1321.76 μatm, 1130.98 μatm, and 1174.33 μatm in the upper, middle, and lower stretch, respectively, with a mean of 1185.29 μatm. Interestingly, the upper stretch exhibited elevated mean pCO and FCO levels (fugacity of CO: 3.63 gmd) compared to the middle and lower stretch, underscoring the intricate interplay between hydrochemistry and CO dynamics. In the context of pCO fluctuations, nitrate concentrations in the upper segment and levels of biological oxygen demand (BOD) and dissolved oxygen (DO) in the middle and lower segments are emerging as crucial explanatory factors. Furthermore, regression tree (RT) and importance analyses pinpointed biochemical oxygen demand (BOD) as the paramount factor influencing pCO variations across the Ganga River (n = 91). A robust negative correlation between BOD and FCO was also observed. The distinct longitudinal patterns of both parameters may induce a negative correlation between BOD and pCO. Therefore, comprehensive studies are necessitated to decipher the underlying mechanisms governing this relationship. The present insights are instrumental in comprehending the potential of CO emissions in the Ganga River and facilitating riverine restoration and management. Our findings underscore the significance of incorporating South Asian rivers in the evaluation of the global carbon budget.
人为因素极大地改变了亚洲河流生态系统的水文化学特性和物质流动,可能占全球排放量的 40-50%。尽管亚洲河流受到了普遍的影响,但对于它们与二氧化碳(CO)排放的相关性的研究却很少。在这项研究中,我们使用基于碳酸盐平衡的模型(pCOSYS)计算了 CO 的分压(pCO),并从 2013 年至 2021 年在恒河的 91 个站点的历史记录中检查了其与水文化学参数的相关性。研究揭示了恒河河流系统中 pCO 的显著空间异质性。pCO 浓度在恒河的上、中、下游分别为 1321.76 μatm、1130.98 μatm 和 1174.33 μatm,平均值为 1185.29 μatm。有趣的是,与中、下游相比,上游的平均 pCO 和 FCO 水平较高(CO 的逸度:3.63 gmd),这突显了水文化学和 CO 动力学之间的复杂相互作用。在 pCO 波动的情况下,硝酸盐浓度在上段,生物需氧量(BOD)和溶解氧(DO)水平在中段和下段是解释 pCO 变化的关键因素。此外,回归树(RT)和重要性分析指出,生化需氧量(BOD)是影响恒河 pCO 变化的最重要因素(n=91)。BOD 和 FCO 之间也存在着显著的负相关关系。这两个参数的明显纵向模式可能导致 BOD 和 pCO 之间存在负相关关系。因此,需要进行综合研究以阐明控制这种关系的潜在机制。这些研究结果有助于了解恒河 CO 排放的潜力,促进河流恢复和管理。我们的研究结果强调了将南亚河流纳入全球碳预算评估的重要性。