文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用实时数据和机器学习预测美国各州的自杀死亡人数。

Predicting state level suicide fatalities in the united states with realtime data and machine learning.

作者信息

Patel Devashru, Sumner Steven A, Bowen Daniel, Zwald Marissa, Yard Ellen, Wang Jing, Law Royal, Holland Kristin, Nguyen Theresa, Mower Gary, Chen Yushiuan, Johnson Jenna Iberg, Jespersen Megan, Mytty Elizabeth, Lee Jennifer M, Bauer Michael, Caine Eric, De Choudhury Munmun

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA.

National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

Npj Ment Health Res. 2024 Jan 16;3(1):3. doi: 10.1038/s44184-023-00045-8.


DOI:10.1038/s44184-023-00045-8
PMID:38609512
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10956008/
Abstract

Digital trace data and machine learning techniques are increasingly being adopted to predict suicide-related outcomes at the individual level; however, there is also considerable public health need for timely data about suicide trends at the population level. Although significant geographic variation in suicide rates exist by state within the United States, national systems for reporting state suicide trends typically lag by one or more years. We developed and validated a deep learning based approach to utilize real-time, state-level online (Mental Health America web-based depression screenings; Google and YouTube Search Trends), social media (Twitter), and health administrative data (National Syndromic Surveillance Program emergency department visits) to estimate weekly suicide counts in four participating states. Specifically, per state, we built a long short-term memory (LSTM) neural network model to combine signals from the real-time data sources and compared predicted values of suicide deaths from our model to observed values in the same state. Our LSTM model produced accurate estimates of state-specific suicide rates in all four states (percentage error in suicide rate of -2.768% for Utah, -2.823% for Louisiana, -3.449% for New York, and -5.323% for Colorado). Furthermore, our deep learning based approach outperformed current gold-standard baseline autoregressive models that use historical death data alone. We demonstrate an approach to incorporate signals from multiple proxy real-time data sources that can potentially provide more timely estimates of suicide trends at the state level. Timely suicide data at the state level has the potential to improve suicide prevention planning and response tailored to the needs of specific geographic communities.

摘要

数字追踪数据和机器学习技术越来越多地被用于预测个体层面与自杀相关的结果;然而,在人群层面,对于自杀趋势的及时数据也有相当大的公共卫生需求。尽管美国各州的自杀率存在显著的地理差异,但报告各州自杀趋势的国家系统通常会滞后一到多年。我们开发并验证了一种基于深度学习的方法,利用实时的州级在线数据(美国心理健康协会基于网络的抑郁症筛查;谷歌和YouTube搜索趋势)、社交媒体(推特)和卫生行政数据(国家症候群监测计划急诊室就诊情况)来估计四个参与州的每周自杀人数。具体而言,我们针对每个州构建了一个长短期记忆(LSTM)神经网络模型,以整合来自实时数据源的信号,并将我们模型预测的自杀死亡值与同一州的观测值进行比较。我们的LSTM模型在所有四个州都准确估计了特定州的自杀率(犹他州自杀率的百分比误差为-2.768%,路易斯安那州为-2.823%,纽约州为-3.449%,科罗拉多州为-5.323%)。此外,我们基于深度学习的方法优于目前仅使用历史死亡数据的黄金标准基线自回归模型。我们展示了一种整合来自多个代理实时数据源信号的方法,该方法有可能更及时地估计州层面的自杀趋势。州层面及时的自杀数据有可能改善针对特定地理社区需求的自杀预防规划和应对措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16fd/10956008/16d3d796b051/44184_2023_45_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16fd/10956008/16d3d796b051/44184_2023_45_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16fd/10956008/16d3d796b051/44184_2023_45_Fig1_HTML.jpg

相似文献

[1]
Predicting state level suicide fatalities in the united states with realtime data and machine learning.

Npj Ment Health Res. 2024-1-16

[2]
Development of a Machine Learning Model Using Multiple, Heterogeneous Data Sources to Estimate Weekly US Suicide Fatalities.

JAMA Netw Open. 2020-12-1

[3]
Development of a Machine Learning Model to Estimate US Firearm Homicides in Near Real Time.

JAMA Netw Open. 2023-3-1

[4]
Estimating Weekly National Opioid Overdose Deaths in Near Real Time Using Multiple Proxy Data Sources.

JAMA Netw Open. 2022-7-1

[5]
Estimating national and state-level suicide deaths using a novel online symptom search data source.

J Affect Disord. 2023-12-1

[6]
Surveillance for Violent Deaths - National Violent Death Reporting System, 42 States, the District of Columbia, and Puerto Rico, 2019.

MMWR Surveill Summ. 2022-5-20

[7]
Suicidal thoughts and behaviors among adults aged ≥18 years--United States, 2008-2009.

MMWR Surveill Summ. 2011-10-21

[8]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[9]
Surveillance for Violent Deaths - National Violent Death Reporting System, 48 States, the District of Columbia, and Puerto Rico, 2020.

MMWR Surveill Summ. 2023-5-26

[10]
Surveillance for Sickle Cell Disease - Sickle Cell Data Collection Program, Two States, 2004-2018.

MMWR Surveill Summ. 2022-10-7

本文引用的文献

[1]
A Social Media Study on Demographic Differences in Perceived Job Satisfaction.

Proc ACM Hum Comput Interact. 2021-4

[2]
Prioritizing Improved Data and Surveillance for Suicide in the United States in Response to COVID-19.

Am J Public Health. 2021-7

[3]
Development of a Machine Learning Model Using Multiple, Heterogeneous Data Sources to Estimate Weekly US Suicide Fatalities.

JAMA Netw Open. 2020-12-1

[4]
Time series forecasting of COVID-19 transmission in Canada using LSTM networks.

Chaos Solitons Fractals. 2020-6

[5]
The Validity of Google Trends Search Volumes for Behavioral Forecasting of National Suicide Rates in Ireland.

Int J Environ Res Public Health. 2019-9-2

[6]
High-performance medicine: the convergence of human and artificial intelligence.

Nat Med. 2019-1-7

[7]
Extracting psychiatric stressors for suicide from social media using deep learning.

BMC Med Inform Decis Mak. 2018-7-23

[8]
Vital Signs: Trends in State Suicide Rates - United States, 1999-2016 and Circumstances Contributing to Suicide - 27 States, 2015.

MMWR Morb Mortal Wkly Rep. 2018-6-8

[9]
Discovering Shifts to Suicidal Ideation from Mental Health Content in Social Media.

Proc SIGCHI Conf Hum Factor Comput Syst. 2016-5

[10]
Consumer health information seeking in social media: a literature review.

Health Info Libr J. 2017-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索