Patel Devashru, Sumner Steven A, Bowen Daniel, Zwald Marissa, Yard Ellen, Wang Jing, Law Royal, Holland Kristin, Nguyen Theresa, Mower Gary, Chen Yushiuan, Johnson Jenna Iberg, Jespersen Megan, Mytty Elizabeth, Lee Jennifer M, Bauer Michael, Caine Eric, De Choudhury Munmun
School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA.
National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Npj Ment Health Res. 2024 Jan 16;3(1):3. doi: 10.1038/s44184-023-00045-8.
Digital trace data and machine learning techniques are increasingly being adopted to predict suicide-related outcomes at the individual level; however, there is also considerable public health need for timely data about suicide trends at the population level. Although significant geographic variation in suicide rates exist by state within the United States, national systems for reporting state suicide trends typically lag by one or more years. We developed and validated a deep learning based approach to utilize real-time, state-level online (Mental Health America web-based depression screenings; Google and YouTube Search Trends), social media (Twitter), and health administrative data (National Syndromic Surveillance Program emergency department visits) to estimate weekly suicide counts in four participating states. Specifically, per state, we built a long short-term memory (LSTM) neural network model to combine signals from the real-time data sources and compared predicted values of suicide deaths from our model to observed values in the same state. Our LSTM model produced accurate estimates of state-specific suicide rates in all four states (percentage error in suicide rate of -2.768% for Utah, -2.823% for Louisiana, -3.449% for New York, and -5.323% for Colorado). Furthermore, our deep learning based approach outperformed current gold-standard baseline autoregressive models that use historical death data alone. We demonstrate an approach to incorporate signals from multiple proxy real-time data sources that can potentially provide more timely estimates of suicide trends at the state level. Timely suicide data at the state level has the potential to improve suicide prevention planning and response tailored to the needs of specific geographic communities.
数字追踪数据和机器学习技术越来越多地被用于预测个体层面与自杀相关的结果;然而,在人群层面,对于自杀趋势的及时数据也有相当大的公共卫生需求。尽管美国各州的自杀率存在显著的地理差异,但报告各州自杀趋势的国家系统通常会滞后一到多年。我们开发并验证了一种基于深度学习的方法,利用实时的州级在线数据(美国心理健康协会基于网络的抑郁症筛查;谷歌和YouTube搜索趋势)、社交媒体(推特)和卫生行政数据(国家症候群监测计划急诊室就诊情况)来估计四个参与州的每周自杀人数。具体而言,我们针对每个州构建了一个长短期记忆(LSTM)神经网络模型,以整合来自实时数据源的信号,并将我们模型预测的自杀死亡值与同一州的观测值进行比较。我们的LSTM模型在所有四个州都准确估计了特定州的自杀率(犹他州自杀率的百分比误差为-2.768%,路易斯安那州为-2.823%,纽约州为-3.449%,科罗拉多州为-5.323%)。此外,我们基于深度学习的方法优于目前仅使用历史死亡数据的黄金标准基线自回归模型。我们展示了一种整合来自多个代理实时数据源信号的方法,该方法有可能更及时地估计州层面的自杀趋势。州层面及时的自杀数据有可能改善针对特定地理社区需求的自杀预防规划和应对措施。
Npj Ment Health Res. 2024-1-16
JAMA Netw Open. 2023-3-1
J Affect Disord. 2023-12-1
MMWR Surveill Summ. 2011-10-21
Cochrane Database Syst Rev. 2022-2-1
MMWR Surveill Summ. 2022-10-7
Proc ACM Hum Comput Interact. 2021-4
Am J Public Health. 2021-7
Chaos Solitons Fractals. 2020-6
Int J Environ Res Public Health. 2019-9-2
BMC Med Inform Decis Mak. 2018-7-23
MMWR Morb Mortal Wkly Rep. 2018-6-8
Proc SIGCHI Conf Hum Factor Comput Syst. 2016-5
Health Info Libr J. 2017-10-17