文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习从社交媒体中提取自杀相关的精神压力源

Extracting psychiatric stressors for suicide from social media using deep learning.

机构信息

The University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, Houston, TX, 77030, USA.

Department of Management Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

出版信息

BMC Med Inform Decis Mak. 2018 Jul 23;18(Suppl 2):43. doi: 10.1186/s12911-018-0632-8.


DOI:10.1186/s12911-018-0632-8
PMID:30066665
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6069295/
Abstract

BACKGROUND: Suicide has been one of the leading causes of deaths in the United States. One major cause of suicide is psychiatric stressors. The detection of psychiatric stressors in an at risk population will facilitate the early prevention of suicidal behaviors and suicide. In recent years, the widespread popularity and real-time information sharing flow of social media allow potential early intervention in a large-scale population. However, few automated approaches have been proposed to extract psychiatric stressors from Twitter. The goal of this study was to investigate techniques for recognizing suicide related psychiatric stressors from Twitter using deep learning based methods and transfer learning strategy which leverages an existing annotation dataset from clinical text. METHODS: First, a dataset of suicide-related tweets was collected from Twitter streaming data with a multiple-step pipeline including keyword-based retrieving, filtering and further refining using an automated binary classifier. Specifically, a convolutional neural networks (CNN) based algorithm was used to build the binary classifier. Next, psychiatric stressors were annotated in the suicide-related tweets. The stressor recognition problem is conceptualized as a typical named entity recognition (NER) task and tackled using recurrent neural networks (RNN) based methods. Moreover, to reduce the annotation cost and improve the performance, transfer learning strategy was adopted by leveraging existing annotation from clinical text. RESULTS & CONCLUSIONS: To our best knowledge, this is the first effort to extract psychiatric stressors from Twitter data using deep learning based approaches. Comparison to traditional machine learning algorithms shows the superiority of deep learning based approaches. CNN is leading the performance at identifying suicide-related tweets with a precision of 78% and an F-1 measure of 83%, outperforming Support Vector Machine (SVM), Extra Trees (ET), etc. RNN based psychiatric stressors recognition obtains the best F-1 measure of 53.25% by exact match and 67.94% by inexact match, outperforming Conditional Random Fields (CRF). Moreover, transfer learning from clinical notes for the Twitter corpus outperforms the training with Twitter corpus only with an F-1 measure of 54.9% by exact match. The results indicate the advantages of deep learning based methods for the automated stressors recognition from social media.

摘要

背景:自杀是美国主要死因之一。自杀的一个主要原因是精神压力。在高危人群中检测到精神压力源将有助于早期预防自杀行为和自杀。近年来,社交媒体的广泛普及和实时信息共享流使得对大规模人群进行潜在的早期干预成为可能。然而,很少有自动化方法被提出从 Twitter 中提取精神压力源。本研究的目的是探讨基于深度学习的方法和迁移学习策略从 Twitter 中识别与自杀相关的精神压力源的技术,该策略利用来自临床文本的现有注释数据集。

方法:首先,使用包括基于关键字的检索、过滤和使用自动二进制分类器进一步细化的多步骤管道,从 Twitter 流数据中收集与自杀相关的推文数据集。具体来说,使用卷积神经网络 (CNN) 算法构建二进制分类器。接下来,对与自杀相关的推文中的精神压力源进行注释。压力识别问题被概念化为典型的命名实体识别 (NER) 任务,并使用基于递归神经网络 (RNN) 的方法来解决。此外,为了降低注释成本并提高性能,通过利用来自临床文本的现有注释,采用了迁移学习策略。

结果与结论:据我们所知,这是首次使用基于深度学习的方法从 Twitter 数据中提取精神压力源。与传统机器学习算法的比较表明了基于深度学习的方法的优越性。CNN 在识别与自杀相关的推文方面表现出色,准确率为 78%,F1 得分为 83%,优于支持向量机 (SVM)、Extra Trees (ET) 等。基于 RNN 的精神压力源识别通过精确匹配获得最佳 F1 得分为 53.25%,通过不精确匹配获得最佳 F1 得分为 67.94%,优于条件随机场 (CRF)。此外,从临床笔记向 Twitter 语料库的迁移学习比仅使用 Twitter 语料库的训练表现更好,精确匹配的 F1 得分为 54.9%。结果表明,基于深度学习的方法在社交媒体中自动识别压力源方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/8cf2c7bd282c/12911_2018_632_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/95e4d1078294/12911_2018_632_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/22c7d057a43c/12911_2018_632_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/229a088dee2b/12911_2018_632_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/a967c7683112/12911_2018_632_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/3af548084c24/12911_2018_632_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/249e5aeaf27e/12911_2018_632_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/8cf2c7bd282c/12911_2018_632_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/95e4d1078294/12911_2018_632_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/22c7d057a43c/12911_2018_632_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/229a088dee2b/12911_2018_632_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/a967c7683112/12911_2018_632_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/3af548084c24/12911_2018_632_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/249e5aeaf27e/12911_2018_632_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4129/6069295/8cf2c7bd282c/12911_2018_632_Fig7_HTML.jpg

相似文献

[1]
Extracting psychiatric stressors for suicide from social media using deep learning.

BMC Med Inform Decis Mak. 2018-7-23

[2]
Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach.

Int J Environ Res Public Health. 2019-9-27

[3]
Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach.

J Med Internet Res. 2022-8-17

[4]
Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study.

J Med Internet Res. 2020-8-12

[5]
Extracting comprehensive clinical information for breast cancer using deep learning methods.

Int J Med Inform. 2019-10-2

[6]
Understanding Depressive Symptoms and Psychosocial Stressors on Twitter: A Corpus-Based Study.

J Med Internet Res. 2017-2-28

[7]
Psychiatric stressor recognition from clinical notes to reveal association with suicide.

Health Informatics J. 2018-10-17

[8]
Biomedical named entity recognition using deep neural networks with contextual information.

BMC Bioinformatics. 2019-12-27

[9]
Adversarial active learning for the identification of medical concepts and annotation inconsistency.

J Biomed Inform. 2020-8

[10]
Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models.

J Med Internet Res. 2018-7-9

引用本文的文献

[1]
Large language models for disease diagnosis: a scoping review.

NPJ Artif Intell. 2025

[2]
Smartphone-based text obtained via passive sensing as it relates to direct suicide risk assessment.

Psychol Med. 2025-5-9

[3]
Understanding social media discourse on antidepressants: unsupervised and sentiment analysis using X.

Eur Psychiatry. 2025-3-5

[4]
Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique.

Sci Rep. 2025-1-7

[5]
Predicting state level suicide fatalities in the united states with realtime data and machine learning.

Npj Ment Health Res. 2024-1-16

[6]
Discerning conversational context in online health communities for personalized digital behavior change solutions using Pragmatics to Reveal Intent in Social Media (PRISM) framework.

J Biomed Inform. 2023-4

[7]
Transfer learning for non-image data in clinical research: A scoping review.

PLOS Digit Health. 2022-2-17

[8]
Use of Artificial Intelligence-Based Strategies for Assessing Suicidal Behavior and Mental Illness: A Literature Review.

Cureus. 2022-7-25

[9]
: A Natural Language Processing-Based Digital Phenotyping Tool for Smart Monitoring of Suicidal Ideation.

Healthcare (Basel). 2022-4-8

[10]
Understanding information behavior of South Korean Twitter users who express suicidality on Twitter.

Digit Health. 2022-3-21

本文引用的文献

[1]
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.

Cell. 2018-2-22

[2]
Multi-class machine classification of suicide-related communication on Twitter.

Online Soc Netw Media. 2017-8

[3]
CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines.

J Am Med Inform Assoc. 2018-3-1

[4]
Assessing Suicide Risk and Emotional Distress in Chinese Social Media: A Text Mining and Machine Learning Study.

J Med Internet Res. 2017-7-10

[5]
Researching Mental Health Disorders in the Era of Social Media: Systematic Review.

J Med Internet Res. 2017-6-29

[6]
Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge.

J Biomed Inform. 2017-6-15

[7]
De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID shared tasks Track 1.

J Biomed Inform. 2017-6-11

[8]
Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets.

J Biomed Semantics. 2017-3-3

[9]
Variations in Facebook Posting Patterns Across Validated Patient Health Conditions: A Prospective Cohort Study.

J Med Internet Res. 2017-1-6

[10]
De-identification of patient notes with recurrent neural networks.

J Am Med Inform Assoc. 2017-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索