Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine.
Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine.
Int J Mol Sci. 2024 Mar 22;25(7):3584. doi: 10.3390/ijms25073584.
Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.
酸敏离子通道(ASICs)在感知和响应细胞外酸化变化中发挥着关键作用。这些质子门控阳离子通道对于神经元功能至关重要,如学习和记忆、恐惧、机械感觉和内部调节,如突触可塑性。此外,它们在神经元变性、缺血性神经元损伤、癫痫发作终止、疼痛感知等方面发挥着关键作用。功能性 ASIC 由(ASIC1-ASIC3)同源亚基组成同源或异源三聚体。ASIC1a 是中枢神经系统(CNS)中的主要 ASIC 同工型,在细胞外区域具有酸性口袋,这是通道门控的关键调节剂。越来越多的证据表明,ASIC1a 通道是治疗各种神经障碍的潜在治疗靶点,包括中风、癫痫和疼痛。许多研究旨在确定 ASIC 通道的变构调节剂。然而,ASIC 的调节仍然知之甚少。我们使用所有可用的晶体结构,这些结构对应于 ASIC1 的不同功能状态,以及分子动力学模拟(MD)协议,分析了通道失活的过程。然后,我们应用分子对接程序来预测适合阿米洛利结合的蛋白质构象。为了确认其唯一的活性阻滞剂对 ASIC1 状态转变途径的影响,我们研究了与另一个 MD 模拟运行的复合物。进一步的实验评估了 Enamine 库中出现的各种化合物,这些化合物具有可检测的 ASIC 抑制活性。我们使用计算机模拟方法的组合,对阿米洛利抑制 ASIC1a 的结构基础进行了详细分析,以可视化其与开放状态下的离子通道的相互作用。人工激活(否则,中央孔扩张)会导致通道结构的复杂变化,即其跨膜结构域。输出的蛋白质构象被用作一组对接模型,适用于对 Enamine 化学库进行高通量虚拟筛选。虚拟筛选的结果通过电生理测定得到了证实,其中三种命中化合物的结果显示最佳。