Suppr超能文献

MGMT ProFWise:联合特征选择和基于秩的加权方法在胶质母细胞瘤患者中解锁 MGMT 甲基化状态与血清蛋白表达关联的新应用。

MGMT ProFWise: Unlocking a New Application for Combined Feature Selection and the Rank-Based Weighting Method to Link MGMT Methylation Status to Serum Protein Expression in Patients with Glioblastoma.

机构信息

Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA.

Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA.

出版信息

Int J Mol Sci. 2024 Apr 6;25(7):4082. doi: 10.3390/ijms25074082.

Abstract

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.

摘要

胶质母细胞瘤(GBM)是一种致命的脑肿瘤,治疗选择有限。O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)启动子甲基化状态是与替莫唑胺反应、作为 GBM 标准化疗药物以及与患者生存相关的关键分子生物标志物。然而,MGMT 状态是在肿瘤组织中捕获的,由于获取困难,限制了该分子特征在治疗监测中的应用。MGMT 蛋白表达水平可能为深入了解 MGMT 的机制提供更多见解,但目前与启动子甲基化相关性较差。获取肿瘤组织进行 MGMT 检测的困难推动了对非侵入性方法的需求,以预测 MGMT 状态。特征选择旨在识别最具信息量的特征,以构建准确和可解释的预测模型。本研究探索了联合特征选择(即 LASSO 和 mRMR)和基于排名的加权方法(即 MGMT ProFWise)在非侵入性链接 GBM 患者 MGMT 启动子甲基化状态和血清蛋白表达中的新应用。我们的方法提供了有希望的结果,在对两个大规模蛋白质组数据集(7k SomaScan 面板和 CPTAC)进行所有分析时,降低了维度(超过 95%)。计算结果表明,所提出的方法提供了 14 个共享的血清生物标志物,这些标志物可能有助于 GBM 相关过程的诊断、预后和/或预测操作,需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd0a/11012706/fddd0f8fce6d/ijms-25-04082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验