Suppr超能文献

基于全景片检测下颌第三磨牙牙根与下牙槽神经管毗邻关系的全自动深度学习模型。

Fully automated deep learning model for detecting proximity of mandibular third molar root to inferior alveolar canal using panoramic radiographs.

机构信息

Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China PRC; Jiangsu Province Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.

School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China; Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Jun;137(6):671-678. doi: 10.1016/j.oooo.2024.02.011. Epub 2024 Feb 20.

Abstract

OBJECTIVE

This study endeavored to develop a novel, fully automated deep-learning model to determine the topographic relationship between mandibular third molar (MM3) roots and the inferior alveolar canal (IAC) using panoramic radiographs (PRs).

STUDY DESIGN

A total of 1570 eligible subjects with MM3s who had paired PR and cone beam computed tomography (CBCT) from January 2019 to December 2020 were retrospectively collected and randomly grouped into training (80%), validation (10%), and testing (10%) cohorts. The spatial relationship of MM3/IAC was assessed by CBCT and set as the ground truth. MM3-IACnet, a modified deep learning network based on YOLOv5 (You only look once), was trained to detect MM3/IAC proximity using PR. Its diagnostic performance was further compared with dentists, AlexNet, GoogleNet, VGG-16, ResNet-50, and YOLOv5 in another independent cohort with 100 high-risk MM3 defined as root overlapping with IAC on PR.

RESULTS

The MM3-IACnet performed best in predicting the MM3/IAC proximity, as evidenced by the highest accuracy (0.885), precision (0.899), area under the curve value (0.95), and minimal time-spending compared with other models. Moreover, our MM3-IACnet outperformed other models in MM3/IAC risk prediction in high-risk cases.

CONCLUSION

MM3-IACnet model can assist clinicians in MM3s risk assessment and treatment planning by detecting MM3/IAC topographic relationship using PR.

摘要

目的

本研究旨在开发一种新颖的全自动深度学习模型,利用全景片(PR)确定下颌第三磨牙(MM3)根与下牙槽神经管(IAC)之间的解剖关系。

研究设计

回顾性收集了 2019 年 1 月至 2020 年 12 月期间具有 MM3 且具有 PR 和锥形束 CT(CBCT)配对的 1570 名合格受试者,并将其随机分为训练组(80%)、验证组(10%)和测试组(10%)。通过 CBCT 评估 MM3/IAC 的空间关系,并将其作为基准。基于 YOLOv5(只看一次)的改进型深度学习网络 MM3-IACnet 被用于训练,通过 PR 检测 MM3/IAC 位置。在另一组 100 名具有 PR 上与 IAC 重叠根的高风险 MM3 定义的独立队列中,进一步比较了其与牙医、AlexNet、GoogleNet、VGG-16、ResNet-50 和 YOLOv5 的诊断性能。

结果

MM3-IACnet 在预测 MM3/IAC 位置方面表现最佳,表现为最高的准确性(0.885)、精度(0.899)、曲线下面积值(0.95)和与其他模型相比最小的时间消耗。此外,我们的 MM3-IACnet 在高风险病例中对 MM3/IAC 风险预测的表现优于其他模型。

结论

通过使用 PR 检测 MM3/IAC 的解剖关系,MM3-IACnet 模型可以帮助临床医生评估 MM3 的风险和制定治疗计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验