Suppr超能文献

基于带基准点的改进最小误差熵准则的计算高效鲁棒自适应滤波算法

Computationally efficient robust adaptive filtering algorithm based on improved minimum error entropy criterion with fiducial points.

作者信息

Hou Xinyan, Zhao Haiquan, Long Xiaoqiang, So Hing Cheung

机构信息

Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China.

出版信息

ISA Trans. 2024 Jun;149:314-324. doi: 10.1016/j.isatra.2024.04.008. Epub 2024 Apr 9.

Abstract

Recently, there has been a strong interest in the minimum error entropy (MEE) criterion derived from information theoretic learning, which is effective in dealing with the multimodal non-Gaussian noise case. However, the kernel function is shift invariant resulting in the MEE criterion being insensitive to the error location. An existing solution is to combine the maximum correntropy (MC) with MEE criteria, leading to the MEE criterion with fiducial points (MEEF). Nevertheless, the algorithms based on the MEEF criterion usually require higher computational complexity. To remedy this problem, an improved MEEF (IMEEF) criterion is devised, aiming to avoid repetitive calculations of the aposteriori error, and an adaptive filtering algorithm based on gradient descent (GD) method is proposed, namely, GD-based IMEEF (IMEEF-GD) algorithm. In addition, we provide the convergence condition in terms of mean sense, along with an analysis of the steady-state and transient behaviors of IMEEF-GD in the mean-square sense. Its computational complexity is also analyzed. Simulation results demonstrate that the computational requirement of our algorithm does not vary significantly with the error sample number and the derived theoretical model is highly consistent with the learning curve. Ultimately, we employ the IMEEF-GD algorithm in tasks such as system identification, wind signal magnitude prediction, temperature prediction, and acoustic echo cancellation (AEC) to validate the effectiveness of the IMEEF-GD algorithm.

摘要

最近,人们对信息论学习中推导出来的最小误差熵(MEE)准则产生了浓厚兴趣,该准则在处理多模态非高斯噪声情况时很有效。然而,核函数是平移不变的,这导致MEE准则对误差位置不敏感。现有的一种解决方案是将最大相关熵(MC)与MEE准则相结合,从而得到带基准点的MEE准则(MEEF)。尽管如此,基于MEEF准则的算法通常需要更高的计算复杂度。为了解决这个问题,设计了一种改进的MEEF(IMEEF)准则,旨在避免对后验误差进行重复计算,并提出了一种基于梯度下降(GD)方法的自适应滤波算法,即基于GD的IMEEF(IMEEF-GD)算法。此外,我们给出了均值意义下的收敛条件,并对IMEEF-GD在均方意义下的稳态和瞬态行为进行了分析。还分析了其计算复杂度。仿真结果表明,我们算法的计算需求不会随误差样本数量显著变化,并且推导出来的理论模型与学习曲线高度一致。最后,我们将IMEEF-GD算法应用于系统辨识、风信号幅度预测、温度预测以及声学回声消除(AEC)等任务中,以验证IMEEF-GD算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验