School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, TN, India.
School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, TN, India.
Microb Pathog. 2024 May;190:106639. doi: 10.1016/j.micpath.2024.106639. Epub 2024 Apr 13.
The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO-NPs) using S. rhizophila as a mediator.
The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS).
The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl to SnO-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.
由于使用了无毒的合成工艺,并结合了各种其他益处,生物介导的纳米科学朝着更高的水平和新的基准迈进,这一点显而易见。本研究旨在利用 S. rhizophila 作为媒介合成稳定的氧化锡纳米粒子(SnO-NPs)。
使用多种分析技术,包括扫描电子显微镜(SEM)和透射电子显微镜(TEM)、X 射线衍射(XRD)、紫外-可见(UV-vis)光谱和能谱(EDS),对生物合成的纳米粒子进行了研究。
从表征技术获得的结果表明,S. rhizophila 在环境温度下有效催化了 SnCl 的还原,反应时间为 90 分钟,ƛmax 为 328nm。纳米晶的尺寸被测量为 23nm。本研究调查了纳米级应用对四种细菌菌株(包括克雷伯氏菌、金黄色葡萄球菌、铜绿假单胞菌和大肠杆菌)的抗菌功效。观察到纳米粒子(NPs)的抑菌圈大小从 10 到 25mm 不等。研究结果表明,纳米粒子(NPs)作为抗菌、植物毒性和细胞毒性剂是有效的。