Suppr超能文献

乳腺癌亚型、预后因素与表观扩散系数直方图分析的关系。

The Relationship between Breast Cancer Subtypes, Prognostic Factors, and Apparent Diffusion Coefficient Histogram Analysis.

机构信息

Department of Radiology, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey.

Department of Radiology, Kayseri City Hospital, Kayseri, Turkey.

出版信息

Curr Med Imaging. 2024;20(1):e15734056271069. doi: 10.2174/0115734056271069231221094118.

Abstract

BACKGROUND

Diffusion Magnetic Resonance Imaging (MRI) is a useful method to evaluate tumor biology and tumor microstructure. The apparent diffusion coefficient (ADC) value correlates negatively with the cellular density of the tumor.

OBJECTIVE

This study aimed to investigate the effectiveness of the ADC histogram analysis in showing the relationship between breast cancer prognostic factors and ADC parameters.

METHODS

This study is a retrospective observational descriptive study. ADC histogram parameters were evaluated in all tumor volumes of 67 breast cancer patients. Minimum, 5, 10, 25, 50, 75, 90, 95 percentiles, maximum, mean, median ADC values, kurtosis, and skewness were calculated. Breast MRI examinations were performed on a 3T MR scanner. We evaluated the fibroglandular tissue density of bilateral breasts, background enhancement, localization of masses, multifocality-multicentricity, shape, rim, internal contrast enhancement, and kinetic curve on breast MRI. BIRADS scoring was performed according to breast MRI. Pathologically, histologic type, histologic grade, HER 2, Ki 67, ER-, and PR status were evaluated.

RESULTS

A significant correlation was found between tumor volume and ADC scores. There is a significant correlation between min ADC values (p< 0.031), max ADC (p< 0.001), and skewness (p< 0.019). A significant correlation was found between tumor kurtosis and lymph nodes (p< 0.029). There was a significant difference in ADC <sub<mean</sub<, ADC<sub<10%</sub<, ADC<sub<25%</sub<, ADC<sub<50%</sub<, ADC<sub<75%</sub<, ADC<sub<90%</sub<, ADC <sub<95%</sub< and ADC<sub<max values depending on ER-and PRstatus. (for ER p = 0.004, p = 0.018, p = 0.010, p = 0.008, p = 0.004, p = 0.004, p = 0.02, p = 0.02 and p = 0.038, for PR p < 0.001, p = 0.028, p = 0.011, p = 0.001, p < 0.001, p =<0.001, p < 0.001, and p < 0.001, respectively; p < 0.05). These values were lower in ER-and PR-positive status than in ER-and PR-negative receptor status. According to HER2 status, there was a statistically significant difference in ADC<sub<5%</sub< and measurements of the lesions (p = 0.041; p < 0.05). Our study found no significant correlation between other prognostic factors, such as histological grade, Ki-67 indices, and ADC values.

CONCLUSION

Our study found a significant difference between tumor volume, ER- and, PR status, HER2, and lymph node involvement, and some ADC values among prognostic factors for breast cancer. Furthermore, ADC histogram analysis can provide additional value in predicting some prognostic factors.

摘要

背景

扩散磁共振成像(MRI)是评估肿瘤生物学和肿瘤微结构的有用方法。表观扩散系数(ADC)值与肿瘤的细胞密度呈负相关。

目的

本研究旨在探讨 ADC 直方图分析在显示乳腺癌预后因素与 ADC 参数之间关系的有效性。

方法

本研究为回顾性观察描述性研究。对 67 例乳腺癌患者的所有肿瘤体积进行 ADC 直方图参数评估。计算最小、5、10、25、50、75、90、95 百分位数、最大、平均、中位数 ADC 值、峰度和偏度。乳腺 MRI 检查在 3T MR 扫描仪上进行。我们评估了双侧乳腺的纤维腺体密度、背景强化、肿块定位、多灶性-多中心性、形状、边缘、内部对比增强和动力学曲线。根据乳腺 MRI 进行 BIRADS 评分。病理上评估组织学类型、组织学分级、HER2、Ki67、ER-和 PR 状态。

结果

肿瘤体积与 ADC 评分之间存在显著相关性。 min ADC 值(p<0.031)、max ADC(p<0.001)和偏度(p<0.019)之间存在显著相关性。肿瘤峰度与淋巴结之间存在显著相关性(p<0.029)。ER-和 PR 状态的 ADC<sub<mean</sub<、ADC<sub<10%</sub<、ADC<sub<25%</sub<、ADC<sub<50%</sub<、ADC<sub<75%</sub<、ADC<sub<90%</sub<、ADC <sub<95%</sub<和 ADC<sub<max值存在显著差异。(对于 ER,p=0.004,p=0.018,p=0.010,p=0.008,p=0.004,p=0.004,p=0.02,p=0.02 和 p=0.038,对于 PR,p<0.001,p=0.028,p=0.011,p=0.001,p<0.001,p<0.001,p<0.001,和 p<0.001,p<0.05)。ER-和 PR 阳性状态下这些值低于 ER-和 PR 阴性受体状态。根据 HER2 状态,ADC<sub<5%</sub<和病变测量存在统计学显著差异(p=0.041;p<0.05)。我们的研究没有发现其他预后因素,如组织学分级、Ki-67 指数和 ADC 值之间存在显著相关性。

结论

我们的研究发现乳腺癌的肿瘤体积、ER-和 PR 状态、HER2 和淋巴结受累之间存在显著差异,以及一些 ADC 值在乳腺癌的预后因素之间存在显著差异。此外,ADC 直方图分析可以为预测某些预后因素提供额外的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验