Suppr超能文献

基于数据驱动的浮游动物生物区域确定及稳健性分析。

Data-driven determination of zooplankton bioregions and robustness analysis.

作者信息

Pata Patrick R, Galbraith Moira, Young Kelly, Margolin Andrew R, Perry R Ian, Hunt Brian P V

机构信息

Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, B.C., Canada.

Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, B.C., Canada.

出版信息

MethodsX. 2024 Apr 2;12:102676. doi: 10.1016/j.mex.2024.102676. eCollection 2024 Jun.

Abstract

Identifying biogeographic regions through cluster analysis of species distribution data is a common method for partitioning ecosystems. Selecting the appropriate cluster analysis method requires a comparison of multiple algorithms. In this study, we demonstrate a data-driven process to select a method for bioregionalization based on community data and test its robustness to data variability following these steps: •We aggregated and curated zooplankton community observations from expeditions in the Northeast Pacific.•We determined the best bioregionalization approach by comparing nine cluster analysis methods using ten goodness of clustering indices.•We evaluated the robustness of the bioregionalization to different sources of sampling and taxonomic variability by comparing the bioregionalization of the overall dataset with bioregionalizations of subsets of the data. The K-means clustering of the log-chord transformed abundance was selected as the optimal method for bioregionalization of the zooplankton dataset. This clustering resulted in the emergence of four bioregions along the cross-shelf gradient: the Offshore, Deep Shelf, Nearshore, and Deep Fjord bioregions. The robustness analyses demonstrated that the bioregionalization was consistent despite variability in the spatial and temporal frequency of sampling, sampling methodology, and taxonomic coverage.

摘要

通过对物种分布数据进行聚类分析来识别生物地理区域是划分生态系统的常用方法。选择合适的聚类分析方法需要对多种算法进行比较。在本研究中,我们展示了一个数据驱动的过程,用于基于群落数据选择生物区域划分方法,并按照以下步骤测试其对数据变异性的稳健性:•我们汇总并整理了东北太平洋考察中的浮游动物群落观测数据。•我们通过使用十个聚类质量指标比较九种聚类分析方法,确定了最佳生物区域划分方法。•我们通过比较整个数据集的生物区域划分与数据子集的生物区域划分,评估了生物区域划分对不同采样来源和分类变异性的稳健性。对数弦变换丰度的K均值聚类被选为浮游动物数据集生物区域划分的最优方法。这种聚类导致沿陆架梯度出现了四个生物区域:近海、深陆架、近岸和深峡湾生物区域。稳健性分析表明,尽管采样的空间和时间频率、采样方法以及分类覆盖存在变异性,但生物区域划分仍然是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c8c/11015493/5b63eb916891/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验