Phelan Brian T, Xie Zhu-Lin, Liu Xiaolin, Li Xiaosong, Mulfort Karen L, Chen Lin X
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
J Chem Phys. 2024 Apr 14;160(14). doi: 10.1063/5.0188245.
Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)-anthraquinone-based electron donor-acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper-reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.
太阳能燃料催化是一种有望高效收集、存储和利用丰富太阳能的途径。然而,要实现这一目标,必须设计出具有可持续成分的分子系统,使其能够平衡众多光物理和化学过程。为此,我们报道了一系列基于铜(I)-蒽醌的电子供体-受体二元化合物的结构和光物理特性。这些二元化合物采用了一种杂配的铜(I)双二亚胺结构,其中铜(I)双菲咯啉发色团作为供体,蒽醌作为电子受体。我们使用X射线晶体学和密度泛函理论计算对配合物的结构进行了表征,并通过共振拉曼光谱和光学瞬态吸收光谱对光物理性质进行了表征。计算和共振拉曼光谱表明,铜(I)的金属到配体电荷转移(MLCT)跃迁的激发将电子转移到离域的配体轨道。光学瞬态吸收光谱表明,每个二元化合物都形成了氧化态铜-还原态蒽醌电荷分离态。与大多数铜(I)双菲咯啉配合物不同,在这些配合物中,菲咯啉配体上越来越大的取代基会导致MLCT激发态寿命延长,而在这里,我们观察到随着空间位阻的增加,长寿命电荷分离态的寿命会缩短。尽管菲咯啉和蒽醌部分之间完全共轭,但电荷分离态寿命在电子转移理论的背景下得到了最好的解释,而不是用MLCT激发态典型的能隙定律来解释。