Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
Transl Neurodegener. 2024 Apr 15;13(1):22. doi: 10.1186/s40035-024-00410-3.
The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.
肾素-血管紧张素系统(RAS)最初被认为是一种调节血压的循环激素系统。然而,包括大脑在内的不同组织和器官都具有局部旁分泌 RAS。多巴胺能系统和 RAS 之间的相互调节在几种组织中都有观察到。这些相互作用的失调会导致肾脏和心血管疾病,以及多巴胺能神经元在多巴胺/血管紧张素相互作用的主要大脑中心(如黑质纹状体系统)中的退化进展。多巴胺能功能的下降会导致血管紧张素 1 型(AT1)受体活性的上调,从而导致多巴胺水平的恢复。然而,多巴胺能神经元和小胶质细胞中 AT1 受体的过度活跃会上调细胞 NADPH 氧化酶-超氧化物轴和 Ca 释放,介导氧化应激、神经炎症和α-突触核蛋白聚集的几个关键事件,这些事件与帕金森病(PD)的发病机制有关。神经元内的抗氧化/抗炎性 RAS 可抵消促氧化 AT1 受体过度活跃的作用。与此一致的是,在几种对多巴胺能退化高度易感性的动物模型的黑质和纹状体中,观察到 RAS 活性向促氧化/促炎症 AT1 受体轴的不平衡。有趣的是,针对血管紧张素转换酶 2 和 AT1 受体的自身抗体在 PD 模型和 PD 患者中增加,并导致血脑屏障(BBB)失调和黑质纹状体促炎症 RAS 上调。针对大脑 RAS 的调制的治疗策略,通过 AT1 受体阻滞剂(ARB)和/或抗氧化轴(AT2、Mas 受体)的激活,可能对具有发展 PD 高风险的个体或 PD 的前驱阶段具有神经保护作用,以减少疾病的进展。