State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
Angew Chem Int Ed Engl. 2024 Jun 17;63(25):e202401235. doi: 10.1002/anie.202401235. Epub 2024 May 14.
Halide methyltransferases (HMTs) provide an effective way to regenerate S-adenosyl methionine (SAM) from S-adenosyl homocysteine and reactive electrophiles, such as methyl iodide (MeI) and methyl toluene sulfonate (MeOTs). As compared with MeI, the cost-effective unnatural substrate MeOTs can be accessed directly from cheap and abundant alcohols, but shows only limited reactivity in SAM production. In this study, we developed a dynamic cross-correlation network analysis (DCCNA) strategy for quickly identifying hot spots influencing the catalytic efficiency of the enzyme, and applied it to the evolution of HMT from Paraburkholderia xenovorans. Finally, the optimal mutant, M4 (V55T/C125S/L127T/L129P), exhibited remarkable improvement, with a specific activity of 4.08 U/mg towards MeOTs, representing an 82-fold increase as compared to the wild-type (WT) enzyme. Notably, M4 also demonstrated a positive impact on the catalytic ability with other methyl donors. The structural mechanism behind the enhanced enzyme activity was uncovered by molecular dynamics simulations. Our work not only contributes a promising biocatalyst for the regeneration of SAM, but also offers a strategy for efficient enzyme engineering.
卤代甲基转移酶(HMTs)为从 S-腺苷同型半胱氨酸和反应性亲电试剂(如碘化甲基(MeI)和甲基对甲苯磺酸酯(MeOTs))中再生 S-腺苷甲硫氨酸(SAM)提供了一种有效方法。与 MeI 相比,成本效益高的非天然底物 MeOTs 可以直接从廉价且丰富的醇类物质中获得,但在 SAM 生产中表现出的反应性有限。在这项研究中,我们开发了一种动态互相关网络分析(DCCNA)策略,用于快速识别影响酶催化效率的热点,并将其应用于 Paraburkholderia xenovorans 来源的 HMT 进化。最终,优化的突变体 M4(V55T/C125S/L127T/L129P)表现出显著的改善,对 MeOTs 的比活性达到 4.08 U/mg,与野生型(WT)酶相比提高了 82 倍。值得注意的是,M4 对其他甲基供体的催化能力也有积极影响。通过分子动力学模拟揭示了增强酶活性的结构机制。我们的工作不仅为 SAM 的再生提供了一种有前途的生物催化剂,而且还为高效酶工程提供了一种策略。