Janssen Robine, Benito-Zarza Laura, Cleijpool Pim, Valverde Marta G, Mihăilă Silvia M, Bastiaan-Net Shanna, Garssen Johan, Willemsen Linette E M, Masereeuw Rosalinde
Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands.
Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands.
Adv Healthc Mater. 2025 Feb;14(5):e2304569. doi: 10.1002/adhm.202304569. Epub 2024 Apr 24.
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
自从微流控技术在生物医学领域实施以来,体外模型取得了前所未有的进展,催生了新一代高度复杂的小型化细胞培养平台,即芯片器官(OoC)。这些装置旨在模拟生物相关环境,包括灌注以及其他机械和/或生化刺激,以重现关键的生理事件。虽然芯片器官在模拟多种器官功能方面表现出色,但免疫器官和免疫细胞的整合虽然是近期才开展且具有挑战性,但对于更全面地呈现人体生理学至关重要。这篇综述涵盖了免疫芯片器官模型复杂领域的最新进展,揭示了生物制造技术在弥合概念设计与生理相关性之间差距方面的关键作用。探讨了旨在在微流控环境中复制的免疫细胞行为、相互作用和免疫反应的多方面内容,强调了精确仿生的必要性。此外,还描述了生物制造技术在免疫芯片器官平台上的最新突破和挑战,引导研究人员更深入地理解免疫生理学,并开发出更准确的、可用于预测免疫相关疾病、免疫发育、免疫编程和免疫调节等方面的人体预测模型。