Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Ontario, Canada.
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3G9, Ontario, Canada.
Adv Healthc Mater. 2018 Jan;7(2). doi: 10.1002/adhm.201700506. Epub 2017 Oct 16.
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
生物材料、干细胞生物学和微尺度技术的重大进展使得具有生物相关性的组织和器官得以制造。这些组织和器官,被称为器官芯片(OOC)平台,已经成为用于生物学和药理学应用的组织分析和疾病建模的强大工具。各种生物材料被用于组织制造,为细胞行为和组织形态发生的调控提供了多种生物学、结构和力学线索。源自人类的细胞使个性化 OOC 平台的制造成为可能。微尺度技术特别有助于为组织和器官提供生理微环境。在这篇综述中,生物材料、细胞和微尺度技术被描述为构建 OOC 平台的基本组成部分。然后讨论了 OOC 平台(例如,肝脏、骨骼肌、心脏、癌症、肺、皮肤、骨骼和大脑)的最新发展,作为模拟人体生理学和新陈代谢的功能工具。最后强调了 OOC 平台向加速药物发现的临床研究发展的未来展望和主要挑战。