Suppr超能文献

HITEC 熔融盐与 h-BN 纳米颗粒的热性能分析及热循环用于 CSP 热能存储应用。

Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications.

机构信息

Centre for Research in Advanced Fluid and Process, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, 26300, Kuantan, Pahang, Malaysia.

Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Pahang, Malaysia.

出版信息

Environ Sci Pollut Res Int. 2024 Aug;31(38):50166-50178. doi: 10.1007/s11356-024-33151-x. Epub 2024 Apr 16.

Abstract

Molten salts are the operational fluid for most concentrated solar power (CSP) systems, which has attracted more attention among the scientific community due to the augmentation of their properties with the doping of nanoparticles. Hexagonal boron nitride (h-BN) nanoparticles were dispersed in HITEC molten salt to create a novel nanofluid and evaluate the h-BN nanoparticles' influence on HITEC thermophysical properties. The influence of nanoparticle concentration (0.1, 0.5, and 1wt.%) of h-BN and HITEC was studied in this research. HITEC and nano-enhanced HITEC molten salt (NEHMS) were characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR). Specific heat capacity, latent heat, and melting temperature were assessed using differential scanning calorimetry (DSC). The maximum working temperature was evaluated with thermogravimetric analysis (TGA). The ideal nanoparticle concentration is 0.1 wt.% h-BN, which results in a 27% increase in heat capacity, a 72% increase in latent heat, and a 7% enhancement in thermal stability. The thermal cycling stability test proved the stability of the enhanced thermophysical properties. The material characterization revealed that the samples with improved thermophysical properties have a homogeneous dispersion of nanoparticles with minor nanoparticle agglomeration. The system advisor model (SAM) simulation comparison of the optimum sample with solar salt and HITEC salt revealed that using the optimum sample increases CSP plant efficiency by 0.4% and reduces power costs by 0.13¢/kWh.

摘要

熔盐是大多数聚光太阳能(CSP)系统的工作流体,由于掺杂纳米粒子可以增强其性能,因此在科学界引起了更多的关注。六方氮化硼(h-BN)纳米粒子分散在 HITEC 熔盐中,形成了一种新型的纳米流体,并评估了 h-BN 纳米粒子对 HITEC 热物理性质的影响。本研究研究了纳米粒子浓度(0.1、0.5 和 1wt.%)对 h-BN 和 HITEC 的影响。使用能量色散 X 射线光谱(EDX)、场发射扫描电子显微镜(FESEM)和傅里叶变换红外光谱(FT-IR)对 HITEC 和纳米增强 HITEC 熔盐(NEHMS)进行了表征。使用差示扫描量热法(DSC)评估比热、潜热和熔点。使用热重分析(TGA)评估最高工作温度。理想的纳米粒子浓度为 0.1wt.%h-BN,可使比热提高 27%,潜热提高 72%,热稳定性提高 7%。热循环稳定性测试证明了增强热物理性能的稳定性。材料特性表明,具有改善的热物理性能的样品具有纳米粒子均匀分散的特点,且纳米粒子团聚较少。系统顾问模型(SAM)对最佳样品与太阳能盐和 HITEC 盐的模拟比较表明,使用最佳样品可使 CSP 厂的效率提高 0.4%,并降低 0.13¢/kWh 的电力成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验