Suppr超能文献

小型骨骼显示出与体型相关的比例关系:对哺乳动物腰椎的异速生长的探索。

Small skeletons show size-specific scaling: an exploration of allometry in the mammalian lumbar spine.

机构信息

Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA.

出版信息

Proc Biol Sci. 2024 Apr 30;291(2021):20232868. doi: 10.1098/rspb.2023.2868. Epub 2024 Apr 17.

Abstract

Studies of vertebrate bone biomechanics often focus on skeletal adaptations at upper extremes of body mass, disregarding the importance of skeletal adaptations at lower extremes. Yet mammals are ancestrally small and most modern species have masses under 5 kg, so the evolution of morphology and function at small size should be prioritized for understanding how mammals subsist. We examined allometric scaling of lumbar vertebrae in the small-bodied Philippine endemic rodents known as cloud rats, which vary in mass across two orders of magnitude (15.5 g-2700 g). External vertebral dimensions scale with isometry or positive allometry, likely relating to body size and nuances in quadrupedal posture. In contrast to most mammalian trabecular bone studies, bone volume fraction and trabecular thickness scale with positive allometry and isometry, respectively. It is physiologically impossible for these trends to continue to the upper extremes of mammalian body size, and we demonstrate a fundamental difference in trabecular bone allometry between large- and small-bodied mammals. These findings have important implications for the biomechanical capabilities of mammalian bone at small body size; for the selective pressures that govern skeletal evolution in small mammals; and for the way we define 'small' and 'large' in the context of vertebrate skeletons.

摘要

脊椎动物骨骼生物力学的研究通常集中在身体质量上限的骨骼适应上,而忽略了在身体质量下限的骨骼适应的重要性。然而,哺乳动物的祖先是小型的,大多数现代物种的质量都在 5 公斤以下,因此,为了理解哺乳动物的生存方式,应该优先考虑小体型的形态和功能的进化。我们研究了体型较小的菲律宾特有啮齿动物——云鼠的腰椎的异速生长,这些啮齿动物的质量跨越了两个数量级(15.5 克-2700 克)。外部椎体尺寸与等比例或正异速生长相关,可能与体型和四肢姿势的细微差别有关。与大多数哺乳动物小梁骨研究不同,骨体积分数和小梁厚度分别与正异速生长和等比例生长相关。这些趋势不可能持续到哺乳动物体型的上限,而且我们证明了大型和小型哺乳动物之间的小梁骨异速生长存在根本差异。这些发现对小体型哺乳动物骨骼的生物力学能力、控制小型哺乳动物骨骼进化的选择压力以及我们在脊椎动物骨骼背景下定义“小”和“大”的方式都具有重要意义。

相似文献

1
Small skeletons show size-specific scaling: an exploration of allometry in the mammalian lumbar spine.
Proc Biol Sci. 2024 Apr 30;291(2021):20232868. doi: 10.1098/rspb.2023.2868. Epub 2024 Apr 17.
2
Of mice, rats and men: trabecular bone architecture in mammals scales to body mass with negative allometry.
J Struct Biol. 2013 Aug;183(2):123-31. doi: 10.1016/j.jsb.2013.04.009. Epub 2013 Apr 30.
3
A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.
J Anat. 2015 Mar;226(3):236-43. doi: 10.1111/joa.12278. Epub 2015 Feb 4.
4
Mass allometry of the appendicular skeleton in terrestrial mammals.
J Morphol. 2002 Feb;251(2):195-209. doi: 10.1002/jmor.1083.
5
Postnatal long bone growth in terrestrial placental mammals: allometry, life history, and organismal traits.
J Morphol. 2012 Oct;273(10):1111-26. doi: 10.1002/jmor.20048. Epub 2012 Jul 13.
6
Biomechanical consequences of scaling.
J Exp Biol. 2005 May;208(Pt 9):1665-76. doi: 10.1242/jeb.01520.
7
Theoretical and empirical scaling patterns and topological homology in bone trabeculae.
J Exp Biol. 1998 Feb;201(Pt 4):573-90. doi: 10.1242/jeb.201.4.573.
8
Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling.
Biol Rev Camb Philos Soc. 2024 Apr;99(2):496-524. doi: 10.1111/brv.13032. Epub 2023 Nov 29.
9
Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures.
Evolution. 2015 Jun;69(6):1546-1559. doi: 10.1111/evo.12675. Epub 2015 Jun 9.

引用本文的文献

1
Locomotor signals in the trabecular structure of the hominoid clavicle.
J Anat. 2025 Aug;247(2):284-303. doi: 10.1111/joa.14243. Epub 2025 Mar 9.
2
Does fast running limit numerical variability of the vertebral column in rabbits and hares (Leporidae: Lagomorpha)?
R Soc Open Sci. 2025 Jan 29;12(1):241813. doi: 10.1098/rsos.241813. eCollection 2025 Jan.
3
Raccoons Reveal Hidden Diversity in Trabecular Bone Development.
Integr Org Biol. 2024 Oct 21;6(1):obae038. doi: 10.1093/iob/obae038. eCollection 2024.

本文引用的文献

2
TimeTree 5: An Expanded Resource for Species Divergence Times.
Mol Biol Evol. 2022 Aug 6;39(8). doi: 10.1093/molbev/msac174.
3
A Shrewd Inspection of Vertebral Regionalization in Large Shrews (Soricidae: Crocidurinae).
Integr Org Biol. 2022 Feb 10;4(1):obac006. doi: 10.1093/iob/obac006. eCollection 2022.
4
Cortical and trabecular bone structure of the hominoid capitate.
J Anat. 2021 Aug;239(2):351-373. doi: 10.1111/joa.13437. Epub 2021 May 4.
5
Differing effects of size and lifestyle on bone structure in mammals.
BMC Biol. 2021 Apr 29;19(1):87. doi: 10.1186/s12915-021-01016-1.
6
Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain.
PLoS One. 2020 Aug 19;15(8):e0237042. doi: 10.1371/journal.pone.0237042. eCollection 2020.
7
Sub-trabecular strain evolution in human trabecular bone.
Sci Rep. 2020 Aug 14;10(1):13788. doi: 10.1038/s41598-020-69850-x.
9
Trabecular bone architecture in the stylopod epiphyses of mustelids (Mammalia, Carnivora).
R Soc Open Sci. 2019 Oct 23;6(10):190938. doi: 10.1098/rsos.190938. eCollection 2019 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验