Suppr超能文献

采用单室上流式生物电化学反应器从含硫酸盐的抗生素生产废水中回收生物硫。

Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor.

机构信息

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.

出版信息

Water Res. 2024 Jun 1;256:121590. doi: 10.1016/j.watres.2024.121590. Epub 2024 Apr 13.

Abstract

The high-concentration sulfate (SO) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO removal and elemental sulfur (S) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO removal rate (SRR) of 113.2 ± 5.7 mg SO-S L d coupled with a S production rate (SPR) of 54.4 ± 5.8 mg S-S L d at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO-S L d; SPR = 25.5 ± 9.7 mg S-S L d) under long-term operation. A large amount of biogenic S (about 72.2 mg g VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S in the anode zone. This study proved a new pathway for biogenic S recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.

摘要

抗生素生产废水中高浓度的硫酸盐(SO)会抑制厌氧产甲烷过程,并带来潜在的环境风险。在本研究中,设计了一种新型的单室上流式厌氧生物电化学反应器(UBER),以实现同时去除硫酸盐和回收单质硫(S)。采用碳纤维毡作为阴极,分别安装在底部和阳极上方,以满足硫酸盐还原菌(SRB)和硫氧化菌(SOB)不同的生物生态位需求。生物阳极 UBER(B-UBER)在最佳电压 0.8V 下,平均硫酸盐去除率(SRR)为 113.2 ± 5.7mg SO-S L d,单质硫生成速率(SPR)为 54.4 ± 5.8mg S-S L d,均显著高于无生物阳极 UBER(对照反应器)(SRR = 86.6 ± 13.4mg SO-S L d;SPR = 25.5 ± 9.7mg S-S L d)。在长期运行过程中,B-UBER 中回收了大量的生物成因 S(约 72.2mg g VSS)。生物阳极主要由硫杆菌(SOB 属)和不动杆菌(电活性细菌属)主导,具有更高的电流密度、更低的过电位和更低的内阻。C 型细胞色素主要作为直接和间接电子转移的关键电子转移介体,从而显著提高了电子转移能力和生物成因 S 的回收。B-UBER 中硫转化的反应途径假设为,SRB 在阴极区利用乙酸盐作为主要电子供体将 SO 还原,SOB 在阳极区将电子传递给阳极或氧气,以产生生物成因 S。本研究利用设计合理的单室生物电化学反应器,为从富含硫酸盐的抗生素生产废水中回收生物成因 S 和去除硫酸盐提供了一条新途径。

相似文献

2
Recovery of elemental sulfur with a novel integrated bioelectrochemical system with an electrochemical cell.
Sci Total Environ. 2019 Aug 10;677:175-183. doi: 10.1016/j.scitotenv.2019.04.406. Epub 2019 Apr 29.
3
Enhanced sulfur recovery and sulfate reduction using single-chamber bioelectrochemical system.
Sci Total Environ. 2022 Jun 1;823:153789. doi: 10.1016/j.scitotenv.2022.153789. Epub 2022 Feb 10.
5
Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery.
Water Res. 2016 Nov 15;105:395-405. doi: 10.1016/j.watres.2016.09.014. Epub 2016 Sep 10.
7
Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition.
Bioresour Technol. 2012 Jul;116:517-21. doi: 10.1016/j.biortech.2012.03.095. Epub 2012 Apr 13.
9
Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
J Hazard Mater. 2008 Jun 15;154(1-3):1060-5. doi: 10.1016/j.jhazmat.2007.11.022. Epub 2007 Nov 17.
10
Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode.
Water Res. 2017 Oct 15;123:301-310. doi: 10.1016/j.watres.2017.06.050. Epub 2017 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验