文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于线性相关解释识别单细胞 RNA-seq 数据中的基因表达程序。

Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation.

机构信息

Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65201, USA.

Department of Information Science, University of North Texas, 3940 N Elm St, Denton, TX 76203, USA.

出版信息

J Biomed Inform. 2024 Jun;154:104644. doi: 10.1016/j.jbi.2024.104644. Epub 2024 Apr 15.


DOI:10.1016/j.jbi.2024.104644
PMID:38631462
Abstract

OBJECTIVE: Gene expression analysis through single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of gene regulation in diverse cell types, tissues, and organisms. While existing methods primarily focus on identifying cell type-specific gene expression programs (GEPs), the characterization of GEPs associated with biological processes and stimuli responses remains limited. In this study, we aim to infer biologically meaningful GEPs that are associated with both cellular phenotypes and activity programs directly from scRNA-seq data. METHODS: We applied linear CorEx, a machine-learning-based approach, to infer GEPs by grouping genes based on total correlation optimization function in simulated and real-world scRNA-seq datasets. Additionally, we utilized a transfer learning approach to project CorEx-inferred GEPs to other scRNA-seq datasets. RESULTS: By leveraging total correlation optimization, linear CorEx groups genes and demonstrates superior performance in identifying cell types and activity programs compared to similar methods using simulated data. Furthermore, we apply this same approach to real-world scRNA-seq data from the mouse dentate gyrus and embryonic colon development, uncovering biologically relevant GEPs related to cell types, developmental ages, and cell cycle programs. We also demonstrate the potential for transfer learning by evaluating similar datasets, showcasing the cross-species sensitivity of linear CorEx. CONCLUSION: Our findings validate linear CorEx as a valuable tool for comprehensively analyzing complex signals in scRNA-seq data, leading to deeper insights into gene expression dynamics, cellular heterogeneity, and regulatory mechanisms.

摘要

目的:通过单细胞 RNA 测序(scRNA-seq)进行的基因表达分析彻底改变了我们对不同细胞类型、组织和生物体中基因调控的理解。虽然现有方法主要侧重于识别细胞类型特异性基因表达程序(GEP),但与生物过程和刺激反应相关的 GEP 特征仍然有限。在这项研究中,我们旨在直接从 scRNA-seq 数据推断与细胞表型和活性程序相关的生物学上有意义的 GEP。

方法:我们应用基于机器学习的线性 CorEx,通过基于总相关优化函数对模拟和真实 scRNA-seq 数据集的基因进行分组来推断 GEP。此外,我们还利用迁移学习方法将 CorEx 推断的 GEP 投射到其他 scRNA-seq 数据集。

结果:通过利用总相关优化,线性 CorEx 对基因进行分组,并在识别细胞类型和活性程序方面表现出优于使用模拟数据的类似方法的性能。此外,我们将相同的方法应用于来自小鼠齿状回和胚胎结肠发育的真实 scRNA-seq 数据,揭示了与细胞类型、发育年龄和细胞周期程序相关的生物学上相关的 GEP。我们还通过评估类似数据集展示了线性 CorEx 的跨物种敏感性,证明了迁移学习的潜力。

结论:我们的研究结果验证了线性 CorEx 作为一种全面分析 scRNA-seq 数据中复杂信号的有价值工具的价值,从而深入了解基因表达动力学、细胞异质性和调控机制。

相似文献

[1]
Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation.

J Biomed Inform. 2024-6

[2]
Inferring gene regulatory networks from time-series scRNA-seq data via GRANGER causal recurrent autoencoders.

Brief Bioinform. 2025-3-4

[3]
CSI-GEP: A GPU-based unsupervised machine learning approach for recovering gene expression programs in atlas-scale single-cell RNA-seq data.

Cell Genom. 2025-1-8

[4]
Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis.

Brief Bioinform. 2024-9-23

[5]
Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.

BMC Genomics. 2024-9-18

[6]
Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.

Brief Bioinform. 2024-9-23

[7]
GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data.

BMC Bioinformatics. 2025-4-18

[8]
XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data.

Comput Biol Med. 2024-10

[9]
scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.

Int J Mol Sci. 2024-5-29

[10]
scIDPMs: Single-Cell RNA-Seq Imputation Using Diffusion Probabilistic Models.

IEEE J Biomed Health Inform. 2025-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索