文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过利用样本和基因之间的相似性以及单细胞 RNA-Seq 数据进行批量基因表达的反卷积。

Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.

机构信息

Department of Automation, Xiamen University, Xiamen, China.

Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China.

出版信息

BMC Genomics. 2024 Sep 18;25(1):875. doi: 10.1186/s12864-024-10728-x.


DOI:10.1186/s12864-024-10728-x
PMID:39294558
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11409548/
Abstract

BACKGROUND: The widely adopted bulk RNA-seq measures the gene expression average of cells, masking cell type heterogeneity, which confounds downstream analyses. Therefore, identifying the cellular composition and cell type-specific gene expression profiles (GEPs) facilitates the study of the underlying mechanisms of various biological processes. Although single-cell RNA-seq focuses on cell type heterogeneity in gene expression, it requires specialized and expensive resources and currently is not practical for a large number of samples or a routine clinical setting. Recently, computational deconvolution methodologies have been developed, while many of them only estimate cell type composition or cell type-specific GEPs by requiring the other as input. The development of more accurate deconvolution methods to infer cell type abundance and cell type-specific GEPs is still essential. RESULTS: We propose a new deconvolution algorithm, DSSC, which infers cell type-specific gene expression and cell type proportions of heterogeneous samples simultaneously by leveraging gene-gene and sample-sample similarities in bulk expression and single-cell RNA-seq data. Through comparisons with the other existing methods, we demonstrate that DSSC is effective in inferring both cell type proportions and cell type-specific GEPs across simulated pseudo-bulk data (including intra-dataset and inter-dataset simulations) and experimental bulk data (including mixture data and real experimental data). DSSC shows robustness to the change of marker gene number and sample size and also has cost and time efficiencies. CONCLUSIONS: DSSC provides a practical and promising alternative to the experimental techniques to characterize cellular composition and heterogeneity in the gene expression of heterogeneous samples.

摘要

背景:广泛采用的 bulk RNA-seq 测量细胞的基因表达平均值,掩盖了细胞类型异质性,从而混淆了下游分析。因此,确定细胞组成和细胞类型特异性基因表达谱(GEPs)有助于研究各种生物过程的潜在机制。尽管单细胞 RNA-seq 侧重于基因表达中的细胞类型异质性,但它需要专门的昂贵资源,目前对于大量样本或常规临床环境来说并不实用。最近,已经开发了计算去卷积方法,但其中许多方法仅通过将另一个作为输入来估计细胞类型组成或细胞类型特异性 GEPs。开发更准确的去卷积方法来推断细胞类型丰度和细胞类型特异性 GEPs 仍然至关重要。

结果:我们提出了一种新的去卷积算法 DSSC,该算法通过利用 bulk 表达和单细胞 RNA-seq 数据中的基因-基因和样本-样本相似性,同时推断异质样本的细胞类型特异性基因表达和细胞类型比例。通过与其他现有方法的比较,我们证明 DSSC 有效地推断了模拟伪 bulk 数据(包括数据集内和数据集间模拟)和实验 bulk 数据(包括混合物数据和真实实验数据)中的细胞类型比例和细胞类型特异性 GEPs。DSSC 对标记基因数量和样本大小的变化具有稳健性,并且具有成本和时间效率。

结论:DSSC 为实验技术提供了一种实用且有前途的替代方法,可用于表征异质样本中细胞组成和基因表达异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/7a0feb5040ea/12864_2024_10728_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/b1b8a7f147c9/12864_2024_10728_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/320e876d50b4/12864_2024_10728_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/3f060f313589/12864_2024_10728_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/f1b3beac349e/12864_2024_10728_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/5b3c7d8ec685/12864_2024_10728_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/7a0feb5040ea/12864_2024_10728_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/b1b8a7f147c9/12864_2024_10728_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/320e876d50b4/12864_2024_10728_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/3f060f313589/12864_2024_10728_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/f1b3beac349e/12864_2024_10728_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/5b3c7d8ec685/12864_2024_10728_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/11409548/7a0feb5040ea/12864_2024_10728_Fig6_HTML.jpg

相似文献

[1]
Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.

BMC Genomics. 2024-9-18

[2]
MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.

Brief Bioinform. 2022-11-19

[3]
NNICE: a deep quantile neural network algorithm for expression deconvolution.

Sci Rep. 2024-6-18

[4]
Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.

BMC Bioinformatics. 2024-6-12

[5]
Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation.

J Biomed Inform. 2024-6

[6]
Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes.

Genome Biol. 2023-8-1

[7]
HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).

BMC Med Genomics. 2023-10-31

[8]
Accurate estimation of cell composition in bulk expression through robust integration of single-cell information.

Nat Commun. 2020-4-24

[9]
An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data.

Cells. 2019-9-27

[10]
SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.

Bioinformatics. 2022-9-16

引用本文的文献

[1]
Revolutionizing Implantation Studies: Uterine-Specific Models and Advanced Technologies.

Biomolecules. 2025-3-20

本文引用的文献

[1]
Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology.

Nat Cancer. 2022-4

[2]
Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data.

Nat Commun. 2021-10-20

[3]
Likelihood-based deconvolution of bulk gene expression data using single-cell references.

Genome Res. 2021-10

[4]
DeCompress: tissue compartment deconvolution of targeted mRNA expression panels using compressed sensing.

Nucleic Acids Res. 2021-5-7

[5]
Benchmarking of cell type deconvolution pipelines for transcriptomics data.

Nat Commun. 2020-11-6

[6]
Accurate estimation of cell composition in bulk expression through robust integration of single-cell information.

Nat Commun. 2020-4-24

[7]
netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.

Genome Res. 2020-2

[8]
SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references.

Brief Bioinform. 2021-1-18

[9]
CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.

PLoS Comput Biol. 2019-12-2

[10]
Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.

Bioinformatics. 2019-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索