Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
Plant Cell Rep. 2024 Apr 17;43(5):119. doi: 10.1007/s00299-024-03206-x.
Mutants lacking functional HYD2 homoeologs showed improved seedling growth, but comparable or increased susceptibility to salt stress in tillering plants, suggesting a developmentally restricted role of HYD2 in salt response. Salinity stress threatens global food security by reducing the yield of staple crops such as wheat (Triticum ssp.). Understanding how wheat responds to salinity stress is crucial for developing climate resilient varieties. In this study, we examined the interplay between carotenoid metabolism and the response to salt (NaCl) stress, a specific form of salinity stress, in tetraploid wheat plants with mutations in carotenoid β-hydroxylase 1 (HYD1) and HYD2. Our investigation encompassed both the vulnerable seedling stage and the more developed tillering stage of wheat plant growth. Mutant combinations lacking functional HYD2 homoeologs, including hyd-A2 hyd-B2, hyd-A1 hyd-A2 hyd-B2, hyd-B1 hyd-A2 hyd-B2, and hyd-A1 hyd-B1 hyd-A2 hyd-B2, had longer first true leaves and slightly enhanced root growth during germination under salt stress compared to the segregate wild-type (control) plants. Interestingly, these mutant seedlings also showed decreased levels of neoxanthin and violaxanthin (xanthophylls derived from β-carotene) and an increase in β-carotene in roots. However, tillering hyd mutant and segregate wild-type plants generally did not differ in their height, tiller count, and biomass production under acute or prolonged salt stress, except for decreases in these parameters observed in the hyd-A1 hyd-B1 hyd-A2 hyd-B2 mutant that indicate its heightened susceptibility to salt stress. Taken together, these findings suggest a significant, yet developmentally restricted role of HYD2 homoeologs in salt-stress response in tetraploid wheat. They also show that hyd-A2 hyd-B2 mutant plants, previously demonstrated for possessing enriched nutritional (β-carotene) content, maintain an unimpaired ability to withstand salt stress.
缺乏功能性 HYD2 同系物的突变体显示出更好的幼苗生长,但在分蘖植物中对盐胁迫的敏感性相当或增加,表明 HYD2 在盐响应中具有发育受限的作用。盐胁迫通过降低小麦(Triticum ssp.)等主要作物的产量来威胁全球粮食安全。了解小麦对盐胁迫的反应对于开发具有气候适应能力的品种至关重要。在这项研究中,我们研究了类胡萝卜素代谢与盐(NaCl)胁迫反应之间的相互作用,盐胁迫是一种特定形式的盐胁迫,在具有类胡萝卜素β-羟化酶 1(HYD1)和 HYD2 突变的四倍体小麦植物中进行了研究。我们的研究包括小麦植物生长的脆弱幼苗阶段和更发达的分蘖阶段。缺乏功能性 HYD2 同系物的突变体组合,包括 hyd-A2 hyd-B2、hyd-A1 hyd-A2 hyd-B2、hyd-B1 hyd-A2 hyd-B2 和 hyd-A1 hyd-B1 hyd-A2 hyd-B2,与分离的野生型(对照)植物相比,在盐胁迫下,突变体幼苗的第一真叶更长,根生长略有增强。有趣的是,这些突变体幼苗的根中还表现出较低水平的新黄质和紫黄质(β-胡萝卜素衍生的叶黄素)和β-胡萝卜素增加。然而,在急性或长期盐胁迫下,分蘖突变体和分离的野生型植物的高度、分蘖数和生物量生产通常没有差异,除了在 hyd-A1 hyd-B1 hyd-A2 hyd-B2 突变体中观察到这些参数的降低,表明其对盐胁迫的敏感性增加。总之,这些发现表明 HYD2 同系物在四倍体小麦的盐胁迫反应中具有重要但发育受限的作用。它们还表明,先前证明具有丰富营养(β-胡萝卜素)含量的 hyd-A2 hyd-B2 突变体植物仍然能够不受阻碍地承受盐胁迫。