Suppr超能文献

用于评价类药化合物透过血脑屏障特性的非动物模型。

Non-animal models for blood-brain barrier permeability evaluation of drug-like compounds.

机构信息

Institute for Physiology, Charité - University Medicine Berlin, 10115, Berlin, Germany.

Department of Medicinal Chemistry, Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, (NIPER Gu-Wahati), Ministry of Chemicals and Fertilizers, Government of India, Sila Katamur (Halugurisuk), Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India.

出版信息

Sci Rep. 2024 Apr 17;14(1):8908. doi: 10.1038/s41598-024-59734-9.

Abstract

Diseases related to the central nervous system (CNS) are major health concerns and have serious social and economic impacts. Developing new drugs for CNS-related disorders presents a major challenge as it actively involves delivering drugs into the CNS. Therefore, it is imperative to develop in silico methodologies to reliably identify potential lead compounds that can penetrate the blood-brain barrier (BBB) and help to thoroughly understand the role of different physicochemical properties fundamental to the BBB permeation of molecules. In this study, we have analysed the chemical space of the CNS drugs and compared it to the non-CNS-approved drugs. Additionally, we have collected a feature selection dataset from Muehlbacher et al. (J Comput Aided Mol Des 25(12):1095-1106, 2011. 10.1007/s10822-011-9478-1) and an in-house dataset. This information was utilised to design a molecular fingerprint that was used to train machine learning (ML) models. The best-performing models reported in this study achieved accuracies of 0.997 and 0.98, sensitivities of 1.0 and 0.992, specificities of 0.971 and 0.962, MCCs of 0.984 and 0.958, and ROC-AUCs of 0.997 and 0.999 on an imbalanced and a balanced dataset, respectively. They demonstrated overall good accuracies and sensitivities in the blind validation dataset. The reported models can be applied for fast and early screening drug-like molecules with BBB potential. Furthermore, the bbbPythoN package can be used by the research community to both produce the BBB-specific molecular fingerprints and employ the models mentioned earlier for BBB-permeability prediction.

摘要

与中枢神经系统 (CNS) 相关的疾病是主要的健康关注点,对社会和经济有严重影响。开发用于 CNS 相关疾病的新药是一个重大挑战,因为它需要积极将药物递送到 CNS 中。因此,开发可靠的计算方法来识别有潜力穿透血脑屏障 (BBB) 的先导化合物是非常必要的,这有助于彻底理解对分子穿透 BBB 的不同物理化学性质的作用。在这项研究中,我们分析了 CNS 药物的化学空间,并将其与非 CNS 批准的药物进行了比较。此外,我们还从 Muehlbacher 等人收集了特征选择数据集(J Comput Aided Mol Des 25(12):1095-1106, 2011. 10.1007/s10822-011-9478-1)和内部数据集。利用这些信息设计了一个分子指纹,用于训练机器学习 (ML) 模型。本研究报告的表现最佳的模型报告了 0.997 和 0.98 的准确度、1.0 和 0.992 的敏感度、0.971 和 0.962 的特异性、0.984 和 0.958 的 MCC 以及 0.997 和 0.999 的 ROC-AUC,分别在不平衡和平衡数据集上。它们在盲验证数据集中表现出了整体良好的准确度和敏感度。报告的模型可用于快速和早期筛选具有 BBB 潜力的类药分子。此外,研究界可以使用 bbbPythoN 包来生成 BBB 特异性分子指纹,并使用前面提到的模型进行 BBB 渗透性预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb5/11024088/19c9a5f22baf/41598_2024_59734_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验