Suppr超能文献

在双光子全光生理系统中通过时分复用激发去除神经元活动中的串扰信号。

Removing crosstalk signals in neuron activity by time multiplexed excitations in a two-photon all-optical physiology system.

作者信息

Liu Chi, Hao Yuejun, Lei Bo, Zhong Yi, Kong Lingjie

机构信息

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.

IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.

出版信息

Biomed Opt Express. 2024 Mar 29;15(4):2708-2718. doi: 10.1364/BOE.521047. eCollection 2024 Apr 1.

Abstract

The two-photon all-optical physiology system has attracted great interest in deciphering neuronal circuits , benefiting from its advantages in recording and modulating neuronal activities at single neuron resolutions. However, the interference, or crosstalk, between the imaging and photostimulation beams introduces a significant challenge and may impede the future application of voltage indicators in two-photon all-optical physiology system. Here, we propose the time multiplexed excitation method to distinguish signals from neuronal activities and crosstalks from photostimulation. In our system, the laser pulses of the imaging beam and photostimulation beam are synchronized, and a time delay is introduced into these pulses to separate the fluorescence signal generated by these two beams. We demonstrate the efficacy of our system in eliminating crosstalk signals from photostimulation and evaluate its influence on both genetically encoded calcium indicators (GECIs) and genetically encoded voltage indicators (GEVIs) through experiments.

摘要

双光子全光生理系统因其在单神经元分辨率下记录和调节神经元活动方面的优势,在破译神经回路方面引起了极大的关注。然而,成像光束和光刺激光束之间的干扰或串扰带来了重大挑战,可能会阻碍电压指示剂在双光子全光生理系统中的未来应用。在此,我们提出了时间复用激发方法,以区分来自神经元活动的信号和来自光刺激的串扰。在我们的系统中,成像光束和光刺激光束的激光脉冲是同步的,并且在这些脉冲中引入了时间延迟,以分离由这两束光产生的荧光信号。我们通过实验证明了我们的系统在消除来自光刺激的串扰信号方面的有效性,并评估了其对基因编码钙指示剂(GECIs)和基因编码电压指示剂(GEVIs)的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8584/11019693/9038ad23ddfa/boe-15-4-2708-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验