Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany.
Small. 2024 Sep;20(36):e2310955. doi: 10.1002/smll.202310955. Epub 2024 Apr 18.
DNA origami is a flexible platform for the precise organization of nano-objects, enabling numerous applications from biomedicine to nano-photonics. Its huge potential stems from its high flexibility that allows customized structures to meet specific requirements. The ability to generate diverse final structures from a common base by folding significantly enhances design variety and is regularly occurring in liquid. This study describes a novel approach that combines top-down lithography with bottom-up DNA origami techniques to control folding of the DNA origami with the adsorption on pre-patterned surfaces. Using this approach, tunable plasmonic dimer nano-arrays are fabricated on a silicon surface. This involves employing electron beam lithography to create adsorption sites on the surface and utilizing self-organized adsorption of DNA origami functionalized with two gold nanoparticles (AuNPs). The desired folding of the DNA origami helices can be controlled by the size and shape of the adsorption sites. This approach can for example be used to tune the center-to-center distance of the AuNPs dimers on the origami template. To demonstrate this technique's efficiency, the Raman signal of dye molecules (carboxy tetramethylrhodamine, TAMRA) coated on the AuNPs surface are investigated. These findings highlight the potential of tunable DNA origami-based plasmonic nanostructures for many applications.
DNA 折纸术是一种灵活的纳米物体精确组织平台,在生物医学到纳米光子学等众多领域都有应用。其巨大的潜力源于其高度的灵活性,允许定制结构满足特定需求。通过折叠从共同基础产生多种最终结构的能力显著增强了设计的多样性,并且在液体中经常发生。本研究描述了一种新方法,将自上而下的光刻技术与自下而上的 DNA 折纸技术相结合,通过在预图案化表面上吸附来控制 DNA 折纸的折叠。使用这种方法,在硅表面上制造了可调谐的等离子体二聚体纳米阵列。这涉及到在表面上创建吸附位点,并利用带有两个金纳米颗粒 (AuNP) 的 DNA 折纸的自组织吸附。DNA 折纸螺旋的期望折叠可以通过吸附位点的大小和形状来控制。例如,这种方法可用于调整折纸模板上 AuNP 二聚体的中心到中心距离。为了证明这种技术的效率,研究了涂覆在 AuNP 表面上的染料分子(羧基四甲基罗丹明,TAMRA)的拉曼信号。这些发现强调了基于可调 DNA 折纸的等离子体纳米结构在许多应用中的潜力。