Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany.
AG Theoretical Optics & Photonics, Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany.
ACS Nano. 2023 Nov 14;17(21):21227-21239. doi: 10.1021/acsnano.3c05464. Epub 2023 Oct 17.
A versatile generation of plasmonic nanoparticle dimers for surface-enhanced Raman scattering (SERS) is presented by combining a DNA origami nanofork and spherical and nonspherical Au or Ag nanoparticles. Combining different nanoparticle species with a DNA origami nanofork to form DNA origami nanoantennas (DONAs), the plasmonic nanoparticle dimers can be optimized for a specific excitation wavelength in SERS. The preparation of such nanoparticle dimers is robust enough to enable the characterization of SERS intensities and SERS enhancement factors of dye-modified DONAs on a single dimer level by measuring in total several thousands of dimers from five different dimer designs, each functionalized with three different Raman reporter molecules and measured at four different excitation wavelengths. Based on these data, SERS enhancement factor (EF) distributions have been determined for each dimer design and excitation wavelengths. The structures and measurement conditions with the highest EFs are suitable for single-molecule SERS (SM-SERS), which is realized by placing single dye molecules into hot spots. We demonstrate that the probability of placing single molecules in a strongly enhancing hot spot for SM-SERS can be increased by using anisotropic nanoparticles with several sharp edges, such as nanoflowers. Combining a Ag nanoparticle with a Au particle in one dimer structure allows for a broadband excitation covering almost the whole visible range. The most versatile plasmonic dimer structure for SERS combines a spherical Ag nanoparticle with a Au nanoflower. Employing the discontinuous Galerkin time domain method, we numerically investigate the bare, symmetric dimers with respect to spectral and near-field properties, showing that, indeed, the nanoflowers induce multiple hot spots located at the edges which surpass the intensity of the spherical dimers, indicating the possibility for SM-SERS. The presented DONA structures and SERS data provide a robust basis for applying such designs as versatile SERS tags and as substrates for SM-SERS measurements.
一种多功能的等离子体纳米粒子二聚体,用于表面增强拉曼散射(SERS),通过结合 DNA 折纸纳米叉和球形和非球形 Au 或 Ag 纳米粒子来实现。通过将不同的纳米粒子与 DNA 折纸纳米叉结合形成 DNA 折纸纳米天线(DONA),可以优化等离子体纳米粒子二聚体在 SERS 中的特定激发波长。这种纳米粒子二聚体的制备足够稳健,可以通过在单个二聚体水平上测量总共几千个二聚体,从五个不同的二聚体设计中,每个设计都用三个不同的拉曼报告分子功能化,并在四个不同的激发波长下进行测量,来表征染料修饰的 DONA 的 SERS 强度和 SERS 增强因子。基于这些数据,确定了每个二聚体设计和激发波长的 SERS 增强因子(EF)分布。具有最高 EF 的结构和测量条件适合于单分子 SERS(SM-SERS),通过将单个染料分子放置在热点中实现。我们证明,通过使用具有几个锐利边缘的各向异性纳米粒子(例如纳米花),可以增加将单个分子放置在用于 SM-SERS 的强增强热点中的概率。在一个二聚体结构中结合一个 Ag 纳米粒子和一个 Au 粒子允许宽带激发,几乎覆盖整个可见范围。用于 SERS 的最通用的等离子体二聚体结构将一个球形 Ag 纳米粒子与一个 Au 纳米花结合在一起。我们使用不连续 Galerkin 时域方法,对具有光谱和近场特性的裸对称二聚体进行数值研究,结果表明,纳米花确实会在边缘处产生多个热点,其强度超过球形二聚体,表明有可能进行 SM-SERS。所提出的 DONA 结构和 SERS 数据为应用这些设计作为通用的 SERS 标签以及作为 SM-SERS 测量的基底提供了稳健的基础。