Suppr超能文献

用于CO电催化的铜基双金属异质结催化剂的最新进展:揭开产物选择性之谜

Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO Electrocatalysis: Unlocking the Mystery of Product Selectivity.

作者信息

Huang Jiabao, Zhang Xinping, Yang Jiao, Yu Jianmin, Chen Qingjun, Peng Lishan

机构信息

Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China.

School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Adv Sci (Weinh). 2024 Jun;11(24):e2309865. doi: 10.1002/advs.202309865. Epub 2024 Apr 18.

Abstract

Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO (eCORR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCORR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCORR to multi-carbon fuels with high selectivity.

摘要

铜基双金属异质结催化剂有助于将CO进行深度电化学还原(eCORR)以生产高附加值有机化合物,这具有重大前景。了解铜与其他金属的相互作用对各种中间体吸附强度的影响至关重要,因为这直接影响反应选择性。在本综述中,概述了eCORR中各种催化产物的形成机制,并突出了铜基催化剂的独特性。通过考虑不同金属对各种反应中间体的吸附倾向,将包括铜在内的金属分为四类。然后讨论了构建双金属异质结催化剂的意义和优势,并深入探讨了不同类型铜基双金属异质结催化剂的研究成果和当前发展状况。最后,对未来高性能电催化剂的设计策略提出了见解,旨在推动eCORR向高选择性多碳燃料的发展做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/467e/11199994/f3732fc5cb84/ADVS-11-2309865-g017.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验