Suppr超能文献

化学中的线性混合效应模型:教程

Linear Mixed-Effects Models in chemistry: A tutorial.

作者信息

Carnoli Andrea Junior, Lohuis Petra Oude, Buydens Lutgarde M C, Tinnevelt Gerjen H, Jansen Jeroen J

机构信息

Analytical Chemistry & Chemometrics, Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.

Teijin Aramid, Tivolilaan 50, 6824 BV, Arnhem, the Netherlands.

出版信息

Anal Chim Acta. 2024 May 22;1304:342444. doi: 10.1016/j.aca.2024.342444. Epub 2024 Mar 27.

Abstract

A common goal in chemistry is to study the relationship between a measured signal and the variability of certain factors. To this end, researchers often use Design of Experiment to decide which experiments to conduct and (Multiple) Linear Regression, and/or Analysis of Variance to analyze the collected data. Among the assumptions to the very foundation of this strategy, all the experiments are independent, conditional on the settings of the factors. Unfortunately, due to the presence of uncontrollable factors, real-life experiments often deviate from this assumption, making the data analysis results unreliable. In these cases, Mixed-Effects modeling, despite not being widely used in chemometrics, represents a solid data analysis framework to obtain reliable results. Here we provide a tutorial for Linear Mixed-Effects models. We gently introduce the reader to these models by showing some motivating examples. Then, we discuss the theory behind Linear Mixed-Effect models, and we show how to fit these models by making use of real-life data obtained from an exposome study. Throughout the paper we provide R code so that each researcher is able to implement these useful model themselves.

摘要

化学领域的一个常见目标是研究测量信号与某些因素变异性之间的关系。为此,研究人员通常使用实验设计来决定进行哪些实验,并使用(多元)线性回归和/或方差分析来分析收集到的数据。在这一策略的基础假设中,所有实验都是独立的,取决于因素的设置。不幸的是,由于存在不可控因素,实际实验往往偏离这一假设,导致数据分析结果不可靠。在这些情况下,混合效应建模尽管在化学计量学中未被广泛使用,但却是一个获得可靠结果的坚实数据分析框架。在这里,我们提供了一个关于线性混合效应模型的教程。我们通过展示一些有启发性的例子,向读者简要介绍这些模型。然后,我们讨论线性混合效应模型背后的理论,并展示如何利用从暴露组研究中获得的实际数据来拟合这些模型。在整篇论文中,我们提供了R代码,以便每个研究人员都能够自己实现这些有用的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验