Bowman Alan R, Rodríguez Echarri Alvaro, Kiani Fatemeh, Iyikanat Fadil, Tsoulos Ted V, Cox Joel D, Sundararaman Ravishankar, García de Abajo F Javier, Tagliabue Giulia
Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
Light Sci Appl. 2024 Apr 19;13(1):91. doi: 10.1038/s41377-024-01408-2.
Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its microscopic origin strongly debated, and its potential for unraveling nanoscale carrier dynamics largely unexploited. Here, we reveal quantum-mechanical effects in the luminescence emanating from thin monocrystalline gold flakes. Specifically, we present experimental evidence, supported by first-principles simulations, to demonstrate its photoluminescence origin (i.e., radiative emission from electron/hole recombination) when exciting in the interband regime. Our model allows us to identify changes to the measured gold luminescence due to quantum-mechanical effects as the gold film thickness is reduced. Excitingly, such effects are observable in the luminescence signal from flakes up to 40 nm in thickness, associated with the out-of-plane discreteness of the electronic band structure near the Fermi level. We qualitatively reproduce the observations with first-principles modeling, thus establishing a unified description of luminescence in gold monocrystalline flakes and enabling its widespread application as a probe of carrier dynamics and light-matter interactions in this material. Our study paves the way for future explorations of hot carriers and charge-transfer dynamics in a multitude of material systems.
发光是洞察金属中热载流子过程的独特来源,包括用于传感和能量应用的等离子体纳米结构中的热载流子过程。然而,由于其本质上较弱,金属发光仍未得到充分理解,其微观起源存在激烈争论,并且其在揭示纳米级载流子动力学方面的潜力在很大程度上未被开发利用。在这里,我们揭示了单晶薄金片发光中的量子力学效应。具体而言,我们提供了实验证据,并得到第一性原理模拟的支持,以证明在带间激发时其光致发光的起源(即电子/空穴复合的辐射发射)。我们的模型使我们能够识别由于量子力学效应导致的金发光测量值的变化,这种变化随着金膜厚度的减小而出现。令人兴奋的是,在厚度达40纳米的薄片的发光信号中可以观察到这种效应,这与费米能级附近电子能带结构的面外离散性有关。我们用第一性原理建模定性地再现了这些观察结果,从而建立了对单晶金片发光的统一描述,并使其能够广泛应用于探测这种材料中的载流子动力学和光与物质的相互作用。我们的研究为未来探索多种材料系统中的热载流子和电荷转移动力学铺平了道路。