Suppr超能文献

纳米级化学不均匀性主导着合金化钙钛矿太阳能电池的光电响应。

Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells.

作者信息

Frohna Kyle, Anaya Miguel, Macpherson Stuart, Sung Jooyoung, Doherty Tiarnan A S, Chiang Yu-Hsien, Winchester Andrew J, Orr Kieran W P, Parker Julia E, Quinn Paul D, Dani Keshav M, Rao Akshay, Stranks Samuel D

机构信息

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

出版信息

Nat Nanotechnol. 2022 Feb;17(2):190-196. doi: 10.1038/s41565-021-01019-7. Epub 2021 Nov 22.

Abstract

Halide perovskites perform remarkably in optoelectronic devices. However, this exceptional performance is striking given that perovskites exhibit deep charge-carrier traps and spatial compositional and structural heterogeneity, all of which should be detrimental to performance. Here, we resolve this long-standing paradox by providing a global visualization of the nanoscale chemical, structural and optoelectronic landscape in halide perovskite devices, made possible through the development of a new suite of correlative, multimodal microscopy measurements combining quantitative optical spectroscopic techniques and synchrotron nanoprobe measurements. We show that compositional disorder dominates the optoelectronic response over a weaker influence of nanoscale strain variations even of large magnitude. Nanoscale compositional gradients drive carrier funnelling onto local regions associated with low electronic disorder, drawing carrier recombination away from trap clusters associated with electronic disorder and leading to high local photoluminescence quantum efficiency. These measurements reveal a global picture of the competitive nanoscale landscape, which endows enhanced defect tolerance in devices through spatial chemical disorder that outcompetes both electronic and structural disorder.

摘要

卤化物钙钛矿在光电器件中表现卓越。然而,鉴于钙钛矿存在深电荷载流子陷阱以及空间成分和结构的不均匀性,而所有这些本应对性能不利,其如此出色的性能就显得颇为惊人。在此,我们通过对卤化物钙钛矿器件中的纳米级化学、结构和光电格局进行全局可视化,解决了这一长期存在的矛盾。这一可视化得以实现,是通过开发一套新的相关多模态显微镜测量方法,该方法结合了定量光学光谱技术和同步加速器纳米探针测量。我们表明,在纳米级应变变化(即使是大幅变化)影响较弱的情况下,成分无序在光电响应中起主导作用。纳米级成分梯度驱使载流子汇聚到与低电子无序相关的局部区域,使载流子复合远离与电子无序相关的陷阱簇,从而导致高局部光致发光量子效率。这些测量揭示了竞争纳米级格局的全局图景,该图景通过空间化学无序赋予器件增强的缺陷耐受性,这种空间化学无序胜过电子和结构无序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验