Suppr超能文献

破坏致癌性 c-RAF-PDE8A 复合物代表了一种针对 KRAS-c-RAF 依赖性 PDAC 的差异化治疗方法。

Disruption of the pro-oncogenic c-RAF-PDE8A complex represents a differentiated approach to treating KRAS-c-RAF dependent PDAC.

机构信息

College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Siriraj Centre of Research Excellence for Cancer Immunotherapy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

出版信息

Sci Rep. 2024 Apr 18;14(1):8998. doi: 10.1038/s41598-024-59451-3.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRAS PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRAS PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.

摘要

胰腺导管腺癌 (PDAC) 被认为是西方世界癌症死亡的第三大主要原因,为晚期患者提供了几种可行的治疗选择。因此,迫切需要开发新的治疗策略,以有效抑制 PDAC 发病机制和进展所依赖的致癌分子靶点。其中一个靶点是 c-RAF,它是 RAS 的下游效应物,被认为是突变 RAS 驱动的癌症(包括 KRAS PDAC)致癌生长和存活所必需的。在此,我们展示了一种新型的穿透细胞肽破坏剂 (DRx-170) 如何破坏 c-RAF-PDE8A 蛋白-蛋白相互作用 (PPI),从而代表了一种有区别的方法来利用 c-RAF-cAMP/PKA 信号轴并治疗 KRAS-c-RAF 依赖性 PDAC。通过破坏 c-RAF-PDE8A 蛋白复合物,DRx-170 通过依赖于失活 PKA 磷酸化的变构机制促进 c-RAF 的失活。DRx-170 抑制 KRAS PDAC 细胞系 (PANC1) 的细胞增殖、粘附和迁移,而不依赖于 ERK1/2 活性。此外,DRx-170 与 afatinib 联合使用可显著增强 2D 和 3D 细胞模型中 PANC1 的生长抑制作用。DRx-170 的敏感性似乎与 c-RAF 的依赖性相关。这项概念验证研究支持将 DRx-170 开发为一种新型的、有区别的策略,用于靶向 KRAS-c-RAF 依赖性 PDAC 中的 c-RAF 活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc8/11026450/1ca158908440/41598_2024_59451_Fig1_HTML.jpg

相似文献

4
Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells.
Gastroenterology. 2014 Oct;147(4):882-892.e8. doi: 10.1053/j.gastro.2014.06.041. Epub 2014 Jul 3.
7
A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer.
Cancer Lett. 2017 Aug 28;402:61-70. doi: 10.1016/j.canlet.2017.05.015. Epub 2017 May 30.
9
PDE8 controls CD4 T cell motility through the PDE8A-Raf-1 kinase signaling complex.
Cell Signal. 2017 Dec;40:62-72. doi: 10.1016/j.cellsig.2017.08.007. Epub 2017 Aug 26.

本文引用的文献

1
Pancreatic cancer: Advances and challenges.
Cell. 2023 Apr 13;186(8):1729-1754. doi: 10.1016/j.cell.2023.02.014.
2
Interactome dynamics of RAF1-BRAF kinase monomers and dimers.
Sci Data. 2023 Apr 12;10(1):203. doi: 10.1038/s41597-023-02115-0.
3
RAF1 contributes to cell proliferation and STAT3 activation in colorectal cancer independently of microsatellite and KRAS status.
Oncogene. 2023 May;42(20):1649-1660. doi: 10.1038/s41388-023-02683-w. Epub 2023 Apr 5.
4
Pancreatic Cancer: A Review of Current Treatment and Novel Therapies.
J Invest Surg. 2023 Dec 31;36(1):2129884. doi: 10.1080/08941939.2022.2129884. Epub 2022 Oct 3.
5
Anticancer Activity of ST101, A Novel Antagonist of CCAAT/Enhancer Binding Protein β.
Mol Cancer Ther. 2022 Nov 3;21(11):1632-1644. doi: 10.1158/1535-7163.MCT-21-0962.
6
Structure of the RAF1-HSP90-CDC37 complex reveals the basis of RAF1 regulation.
Mol Cell. 2022 Sep 15;82(18):3438-3452.e8. doi: 10.1016/j.molcel.2022.08.012. Epub 2022 Sep 1.
7
The current state of the art and future trends in RAS-targeted cancer therapies.
Nat Rev Clin Oncol. 2022 Oct;19(10):637-655. doi: 10.1038/s41571-022-00671-9. Epub 2022 Aug 26.
8
Drug resistance in targeted cancer therapies with RAF inhibitors.
Cancer Drug Resist. 2021 Jun 17;4(3):665-683. doi: 10.20517/cdr.2021.36. eCollection 2021.
9
Translational advances in pancreatic ductal adenocarcinoma therapy.
Nat Cancer. 2022 Mar;3(3):272-286. doi: 10.1038/s43018-022-00349-2. Epub 2022 Mar 29.
10
CRAF dimerization with ARAF regulates KRAS-driven tumor growth.
Cell Rep. 2022 Feb 8;38(6):110351. doi: 10.1016/j.celrep.2022.110351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验