Yin Xiong, Dong Wentao, Wang Xiaoming, Yu Yongxiang, Yao Daojin
School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330000, China.
Sci Rep. 2024 Apr 18;14(1):8942. doi: 10.1038/s41598-024-59413-9.
This paper presents a fusion algorithm based on the enhanced RRT* TEB algorithm. The enhanced RRT* algorithm is utilized for generating an optimal global path. Firstly, proposing an adaptive sampling function and extending node bias to accelerate global path generation and mitigate local optimality. Secondly, eliminating path redundancy to minimize path length. Thirdly, imposing constraints on the turning angle of the path to enhance path smoothness. Conducting kinematic modeling of the mobile robot and optimizing the TEB algorithm to align the trajectory with the mobile robot's kinematics. The integration of these two algorithms culminates in the development of a fusion algorithm. Simulation and experimental results demonstrate that, in contrast to the traditional RRT* algorithm, the enhanced RRT* algorithm achieves a 5.8% reduction in path length and a 62.5% decrease in the number of turning points. Utilizing the fusion algorithm for path planning, the mobile robot generates a superior, seamlessly smooth global path, adept at circumventing obstacles. Furthermore, the local trajectory meticulously conforms to the kinematic constraints of the mobile robot.
本文提出了一种基于增强型RRT* TEB算法的融合算法。增强型RRT算法用于生成最优全局路径。首先,提出一种自适应采样函数并扩展节点偏差,以加速全局路径生成并减轻局部最优性。其次,消除路径冗余以最小化路径长度。第三,对路径的转弯角度施加约束以提高路径平滑度。对移动机器人进行运动学建模并优化TEB算法,使轨迹与移动机器人的运动学相匹配。这两种算法的集成最终形成了一种融合算法。仿真和实验结果表明,与传统RRT算法相比,增强型RRT*算法的路径长度减少了5.8%,转弯点数减少了62.5%。利用融合算法进行路径规划,移动机器人生成了一条优越的、无缝平滑的全局路径,能够有效避开障碍物。此外,局部轨迹严格符合移动机器人的运动学约束。