Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Finland.
Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
Eur J Pharm Sci. 2024 Jun 1;197:106773. doi: 10.1016/j.ejps.2024.106773. Epub 2024 Apr 17.
Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (K = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (K = 114 ± 14 µM) and the IC values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC shift assay.
细胞色素 P450(CYP)系统是人体中大多数药物的关键消除途径,但也容易因同时给予的药物抑制彼此的 CYP 代谢而产生药物-药物相互作用。CYP 相互作用最严重的形式是不可逆抑制,这会导致关键 CYP 途径的永久失活,只能通过新的功能性酶的从头合成来恢复。在这项研究中,我们使用固定在聚合物微柱阵列壁上的人肝微粒体(HLM)概念化了一种用于 CYP 抑制研究的微流控方法。我们通过在微流流下建立 CYP2C9 模型反应的稳定性和酶动力学,并确定三种人 CYP2C9 抑制剂(磺胺苯唑、替比尼酸、咪康唑)的半最大抑制浓度(IC),评估了这些 HLM 芯片用于 CYP 抑制研究的可行性,包括评估它们的抑制机制和非特异性微粒体在芯片上的结合。总体而言,CYP2C9 代谢的 HLM 芯片的酶动力学(K = 127 ± 55 µM)与静态 HLM 孵育的酶动力学相似(K = 114 ± 14 µM),并且微流体测定法得出的 CYP2C9 的 IC 值(磺胺苯唑 0.38 ± 0.09 µM,替比尼酸 3.4 ± 0.6 µM,咪康唑 0.54 ± 0.09 µM)与使用当前标准 IC 移位测定法确定的值很好地相关。最重要的是,HLM 芯片可以在单次自动实验中区分可逆(磺胺苯唑)和不可逆(替比尼酸)酶抑制剂,这表明 HLM 芯片具有简化当前用于机制 CYP 抑制研究的工作流程的巨大潜力。此外,结果表明,HLM 芯片还可以识别不可逆的酶抑制剂,这些抑制剂不一定会导致时间依赖性抑制(如自杀抑制剂),但其抑制机制基于与 CYP 系统的其他类型的共价或不可逆相互作用。使用我们的 HLM 芯片方法,我们可以识别咪康唑,它是非选择性地抑制人 CYP 系统的化合物,具有体外延长的、可能是不可逆的影响,即使根据 IC 移位测定它不是时间依赖性抑制剂。