Pourbaba Reza, Abdulkhani Ali, Rashidi Alimorad, Ashori Alireza
Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
Sci Rep. 2024 Apr 19;14(1):9039. doi: 10.1038/s41598-024-59612-4.
This work demonstrated enhanced adsorption capabilities of lignin nanoparticles (LNPs) synthesized via a straightforward hydrotropic method compared to pristine lignin (PL) powder for removing methylene blue dye from aqueous solutions. Kraft lignin was used as a precursor and p-toluenesulfonic acid as the hydrotrope to produce spherical LNPs with ~ 200 nm diameter. Extensive characterization by SEM, AFM, DLS, zeta potential, and BET verified successful fabrication of microporous LNPs with fourfold higher specific surface area (14.9 m/g) compared to PL (3.4 m/g). Significantly reduced particle agglomeration and rearranged surface chemistry (zeta potential of -13.3 mV) arising from the self-assembly of lignin fractions under hydrotropic conditions enabled the application of LNPs and superior adsorbents compared to PL. Batch adsorption experiments exhibited up to 14 times higher methylene blue removal capacity, from 20.74 for PL to 127.91 mg/g for LNPs, and ultrafast equilibrium uptake within 3 min for LNPs compared to 10 min for PL. Kinetic modeling based on pseudo-first-order and pseudo-second-order equations revealed chemisorption as the predominant mechanism, with a rate constant of 0.032825 g/mg·h for LNPs-over an order of magnitude higher than PL (0.07125 g/mg·h). Isotherm modeling indicated Langmuir monolayer adsorption behavior on relatively uniform lignin surface functional groups. The substantially augmented adsorption performance of LNPs arose from the increased surface area and abundance of surface functional groups, providing greater accessibility of chemically active binding sites for rapid dye uptake. Overall, this work demonstrates that tailoring lignin nanoparticle structure and surface chemistry via scalable hydrotropic synthesis is a simple and sustainable approach for producing highly efficient lignin-based nano-adsorbents for organic dye removal from industrial wastewater.
这项工作表明,通过直接水溶助长法合成的木质素纳米颗粒(LNPs)与原始木质素(PL)粉末相比,具有更强的从水溶液中去除亚甲基蓝染料的吸附能力。以硫酸盐木质素为前驱体,对甲苯磺酸为水溶助长剂,制备出直径约200nm的球形LNPs。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、动态光散射(DLS)、zeta电位和比表面积分析仪(BET)进行的广泛表征证实,成功制备出了微孔LNPs,其比表面积(14.9m²/g)是PL(3.4m²/g)的四倍。水溶助长条件下木质素组分的自组装显著减少了颗粒团聚,并重新排列了表面化学性质(zeta电位为-13.3mV),使得LNPs与PL相比成为更优质的吸附剂。批量吸附实验表明,LNPs对亚甲基蓝的去除能力比PL高出14倍,从PL的20.74mg/g提高到LNPs的127.91mg/g,并且LNPs在3分钟内即可达到超快平衡吸附,而PL则需要10分钟。基于准一级和准二级方程的动力学模型表明,化学吸附是主要机制,LNPs的速率常数为0.032825g/mg·h,比PL(0.07125g/mg·h)高出一个数量级。等温线模型表明,在相对均匀的木质素表面官能团上存在Langmuir单层吸附行为。LNPs吸附性能的显著提高源于表面积的增加和表面官能团的丰富,为快速染料吸附提供了更多可及的化学活性结合位点。总体而言,这项工作表明,通过可扩展的水溶助长合成法定制木质素纳米颗粒的结构和表面化学性质,是一种简单且可持续的方法,可用于生产高效的木质素基纳米吸附剂,以去除工业废水中的有机染料。