β-乳球蛋白涂层的结构调控仿生海藻酸钠二醛-明胶/聚多巴胺支架促进软骨下骨再生。
Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration.
机构信息
Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom; Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, United Kingdom.
Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany.
出版信息
Acta Biomater. 2024 Jun;181:188-201. doi: 10.1016/j.actbio.2024.04.028. Epub 2024 Apr 18.
In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with β-Lactoglobulin (β-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the β-LG layer on the surface of network-like scaffolds. The β-LG-coated scaffolds exhibited improved swelling capacity as a function of the β-LG concentration. Compared to ADA-GEL/PDA scaffolds, the β-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of β-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of β-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. β-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of β-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with β-Lactoglobulin (β-LG), represents a novel approach to potentially enhance subchondral bone repair. β-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.
在这项研究中,我们开发了聚多巴胺(PDA)功能化的藻酸二醛-明胶(ADA-GEL)支架用于软骨下骨再生。然后,将这些聚合物支架用浓度为 1mg/ml 和 2mg/ml 的β-乳球蛋白(β-LG)进行涂层。形态分析表明,β-LG 层均匀地涂覆在网络状支架的表面上。β-LG 涂层支架的溶胀能力随β-LG 浓度的增加而提高。与 ADA-GEL/PDA 支架相比,β-LG 涂层支架表现出延迟降解和增强的生物矿化。在这里,较低浓度的β-LG 表现出持久的稳定性和优越的仿生羟基磷灰石矿化。根据理论发现,代表低浓度β-LG 的单态在 PDA 表面呈现均匀分布,而二聚态(高浓度)显示出不可控相互作用的高可能性。较低浓度β-LG 的β-LG 涂层 ADA-GEL/PDA 支架提供了一个生物相容的基质,支持绵羊骨髓间充质干细胞的粘附、增殖和碱性磷酸酶(ALP)分泌,并增加人成骨细胞中骨桥蛋白(SPP1)和胶原 I 型(COL1A1)的表达。这些发现表明蛋白质涂层支架在软骨下骨组织再生方面具有潜力。 意义声明:本研究解决了骨软骨缺损修复的一个关键方面,强调了软骨下骨再生的关键作用。聚多巴胺功能化藻酸二醛-明胶(ADA-GEL)支架的开发,用β-乳球蛋白(β-LG)涂层,代表了一种潜在的增强软骨下骨修复的新方法。β-LG 是一种富含必需氨基酸和生物活性肽的牛奶蛋白,被研究用于促进软骨下骨再生。本研究从计算和实验两个方面探讨了蛋白质浓度对有序或不规则沉积的影响,揭示了涂层结构、支架性质和体外性能之间的相互作用。这项工作为软骨下骨再生的有序蛋白涂层策略提供了新的思路,为支持随后的软骨修复提供了一种有前途的生物相容性解决方案。