Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
Life Sci. 2024 Jun 15;347:122651. doi: 10.1016/j.lfs.2024.122651. Epub 2024 Apr 19.
Calcium ion (Ca) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca homeostasis is compromised. Ca regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na/Ca exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca sequestering and release mechanisms to maintain intracellular Ca homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca overload in cerebral ischemia.
钙离子(Ca)失调是神经元细胞死亡和脑缺血后脑损伤的主要原因之一。在缺血性中风期间,神经元维持 Ca 离子稳态的能力受损。Ca 调节神经系统的各种功能,包括神经元活动和三磷酸腺苷(ATP)的产生。Ca 离子稳态的破坏会引发一系列事件,包括未折叠蛋白反应(UPR)途径的激活,这与内质网(ER)应激和线粒体功能障碍有关。当细胞由于各种应激源(如 Ca 离子大量内流)而无法在内质网中管理蛋白质折叠时,就会发生这种反应。因此,UPR 被启动以恢复 ER 功能并减轻应激,但长期激活会导致线粒体功能障碍,最终导致细胞死亡。因此,细胞内 Ca 离子的精确调节是必需的。内质网和线粒体是两个这样的细胞器,它们通过各种钙操作通道,包括肌质网 Ca2+ 释放通道(RyRs)、三磷酸肌醇受体(IP3Rs)、肌浆/内质网 Ca2+-ATP 酶(SERCA)、线粒体 Na+/Ca2+ 交换体(NCLX)、线粒体钙单向转运体(MCU)和电压依赖性阴离子通道(VDACs),来维持细胞内 Ca 离子稳态。这些通道利用 Ca 离子的摄取和释放机制来维持细胞内 Ca 离子稳态,确保适当的细胞功能和存活。本综述批判性地评估了 Ca 离子的重要性及其在脑缺血中的生理作用。我们汇集了最近关于 Ca 离子作用的发现和新兴的治疗策略,特别是针对线粒体和内质网的策略,以解决脑缺血中的 Ca 离子过载问题。
Acta Pharmacol Sin. 2012-10-29
Cell Tissue Res. 2014-8
Histol Histopathol. 2014-5
Biochim Biophys Acta. 2014-10
Front Aging Neurosci. 2025-6-25
Cell Mol Life Sci. 2025-6-28
Int J Mol Sci. 2025-4-22
Front Neurosci. 2025-3-20
Front Cell Neurosci. 2025-2-7