Șerban Matei, Toader Corneliu, Covache-Busuioc Răzvan-Adrian
Puls Med Association, 051885 Bucharest, Romania.
Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Int J Mol Sci. 2025 Aug 3;26(15):7498. doi: 10.3390/ijms26157498.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies.
氧化应激是神经退行性疾病(包括阿尔茨海默病(AD)、帕金森病(PD)和肌萎缩侧索硬化症(ALS))的一个决定性且普遍存在的驱动因素。作为一种分子加速剂,活性氧(ROS)和活性氮(RNS)会损害线粒体功能、加剧脂质过氧化、诱导蛋白质错误折叠并促进慢性神经炎症,从而形成神经元损伤和认知衰退的正反馈循环。尽管氧化应激在促进疾病进展中起着核心作用,但由于影响每个患者的多因素氧化还原失衡及其相应差异,试图用单一治疗性抗氧化剂来中和氧化应激的尝试大多失败了。我们正处于精准氧化还原医学的开端,这得益于综合征多组学整合、人工智能生物标志物识别以及患者特异性治疗干预的精准性等方面的进展。本文旨在对氧化应激及其对神经退行性疾病的影响进行深入的机制评估,重点关注氧化修饰蛋白(如羰基化的tau蛋白、硝化的α-突触核蛋白)、脂质过氧化生物标志物(F2-异前列腺素、4-羟基壬烯醛)和DNA损伤(8-羟基脱氧鸟苷)作为疾病进展的重要生物标志物。我们将批判性地审视大多数临床试验研究,这些研究涉及线粒体靶向抗氧化剂(如MitoQ、SS-31)、Nrf2激活剂(如富马酸二甲酯、萝卜硫素)以及旨在在生物学分子水平上重新建立抗氧化防御和修复氧化还原损伤的表观遗传重编程方案。涉及纳米颗粒(如抗氧化剂递送系统)和CRISPR(如纠正超氧化物歧化酶1和谷胱甘肽过氧化物酶1中的突变)的新兴解决方案有可能通过缩短实现有意义影响和有效治疗所需的时间来改变这些疾病的治疗方法。本文将论证,随着分子生物学与临床夸张进展之间的联系,动态多靶点干预将在从疾病改善到疾病修饰甚至逆转的转变中定义神经退行性疾病的治疗。有了这些就在眼前的创新,未来在将基于网络的生物标志物发现、人工智能驱动的患者分层和适应性联合疗法转化为个性化/持久的神经保护方面提供了显著的可能性。问题不再是我们是否会中和氧化应激;而是我们在神经退行性疾病治疗的新前沿取得成功的可能性有多大。
Alzheimers Dement. 2021-4
Cardiovasc Hematol Agents Med Chem. 2024-2-15
Cochrane Database Syst Rev. 2014
Psychopharmacol Bull. 2024-7-8
Antioxidants (Basel). 2025-6-30
Int J Mol Sci. 2025-4-30
Int J Biol Macromol. 2025-6