Suppr超能文献

从协同激光诱导击穿光谱和高光谱成像中的传感器融合到知识蒸馏用于矿物识别

From sensor fusion to knowledge distillation in collaborative LIBS and hyperspectral imaging for mineral identification.

作者信息

Lopes Tomás, Capela Diana, Guimarães Diana, Ferreira Miguel F S, Jorge Pedro A S, Silva Nuno A

机构信息

INESC TEC, Center for Applied Photonics, 4169-007, Porto, Portugal.

Departamento de Física, Faculdade de Ciências da Universidade do Porto, 4169-007, Porto, Portugal.

出版信息

Sci Rep. 2024 Apr 20;14(1):9123. doi: 10.1038/s41598-024-59553-y.

Abstract

Multimodal spectral imaging offers a unique approach to the enhancement of the analytical capabilities of standalone spectroscopy techniques by combining information gathered from distinct sources. In this manuscript, we explore such opportunities by focusing on two well-known spectral imaging techniques, namely laser-induced breakdown spectroscopy, and hyperspectral imaging, and explore the opportunities of collaborative sensing for a case study involving mineral identification. In specific, the work builds upon two distinct approaches: a traditional sensor fusion, where we strive to increase the information gathered by including information from the two modalities; and a knowledge distillation approach, where the Laser Induced Breakdown spectroscopy is used as an autonomous supervisor for hyperspectral imaging. Our results show the potential of both approaches in enhancing the performance over a single modality sensing system, highlighting, in particular, the advantages of the knowledge distillation framework in maximizing the potential benefits of using multiple techniques to build more interpretable models and paving for industrial applications.

摘要

多模态光谱成像提供了一种独特的方法,通过结合从不同来源收集的信息来增强独立光谱技术的分析能力。在本手稿中,我们通过聚焦于两种著名的光谱成像技术,即激光诱导击穿光谱和高光谱成像,来探索此类机会,并针对一个涉及矿物识别的案例研究探索协同传感的机会。具体而言,这项工作基于两种不同的方法:一种是传统的传感器融合,我们努力通过纳入来自两种模态的信息来增加收集到的信息;另一种是知识蒸馏方法,其中激光诱导击穿光谱被用作高光谱成像的自主监督器。我们的结果显示了这两种方法在提高单模态传感系统性能方面的潜力,尤其突出了知识蒸馏框架在最大化使用多种技术构建更具可解释性模型的潜在益处以及为工业应用铺平道路方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/334a/11032373/9d8279d57bab/41598_2024_59553_Fig1_HTML.jpg

相似文献

2
Data fusion of LIBS and PIL hyperspectral imaging: Understanding the luminescence phenomenon of a complex mineral sample.
Anal Chim Acta. 2022 Feb 1;1192:339368. doi: 10.1016/j.aca.2021.339368. Epub 2021 Dec 15.
3
Identification of Relevant Spectral Ranges in Laser-Induced Breakdown Spectroscopy Imaging Using the Fourier Space.
Appl Spectrosc. 2024 Jul;78(7):753-759. doi: 10.1177/00037028241246545. Epub 2024 Apr 17.
4
Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies.
Talanta. 2015 Mar;134:627-639. doi: 10.1016/j.talanta.2014.12.001. Epub 2014 Dec 13.
7
Detection of minor compounds in complex mineral samples from millions of spectra: A new data analysis strategy in LIBS imaging.
Anal Chim Acta. 2020 Jun 1;1114:66-73. doi: 10.1016/j.aca.2020.04.005. Epub 2020 Apr 6.
9
Remote Sensing Performance Enhancement in Hyperspectral Images.
Sensors (Basel). 2018 Oct 23;18(11):3598. doi: 10.3390/s18113598.
10
Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts.
Acc Chem Res. 2016 Oct 18;49(10):2070-2079. doi: 10.1021/acs.accounts.6b00048. Epub 2016 Sep 28.

本文引用的文献

2
Data fusion of LIBS and PIL hyperspectral imaging: Understanding the luminescence phenomenon of a complex mineral sample.
Anal Chim Acta. 2022 Feb 1;1192:339368. doi: 10.1016/j.aca.2021.339368. Epub 2021 Dec 15.
3
Methodology and applications of elemental mapping by laser induced breakdown spectroscopy.
Anal Chim Acta. 2021 Feb 22;1147:72-98. doi: 10.1016/j.aca.2020.12.054. Epub 2020 Dec 30.
4
A New Deep Learning Based Multi-Spectral Image Fusion Method.
Entropy (Basel). 2019 Jun 5;21(6):570. doi: 10.3390/e21060570.
6
3D and 4D Image Fusion: Coping with Differences in Spectroscopic Modes among Hyperspectral Images.
Anal Chem. 2020 Jul 21;92(14):9591-9602. doi: 10.1021/acs.analchem.0c00780. Epub 2020 Jul 1.
7
Detection of minor compounds in complex mineral samples from millions of spectra: A new data analysis strategy in LIBS imaging.
Anal Chim Acta. 2020 Jun 1;1114:66-73. doi: 10.1016/j.aca.2020.04.005. Epub 2020 Apr 6.
9
Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars.
Appl Spectrosc. 2017 Apr;71(4):721-727. doi: 10.1177/0003702817695289. Epub 2017 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验