Suppr超能文献

基于疾病的医院层面诊断强度指数的开发。

Development of a disease-based hospital-level diagnostic intensity index.

作者信息

Ellenbogen Michael I, Feldman Leonard S, Prichett Laura, Zhou Junyi, Brotman Daniel J

机构信息

Department of Medicine, 1500 Johns Hopkins School of Medicine , Baltimore, MD, USA.

Departments of Medicine and Pediatrics, 1500 Johns Hopkins School of Medicine , Baltimore, MD, USA.

出版信息

Diagnosis (Berl). 2024 Apr 22;11(3):303-311. doi: 10.1515/dx-2023-0184. eCollection 2024 Aug 1.

Abstract

OBJECTIVES

Low-value care is associated with increased healthcare costs and direct harm to patients. We sought to develop and validate a simple diagnostic intensity index (DII) to quantify hospital-level diagnostic intensity, defined by the prevalence of advanced imaging among patients with selected clinical diagnoses that may not require imaging, and to describe hospital characteristics associated with high diagnostic intensity.

METHODS

We utilized State Inpatient Database data for inpatient hospitalizations with one or more pre-defined discharge diagnoses at acute care hospitals. We measured receipt of advanced imaging for an associated diagnosis. Candidate metrics were defined by the proportion of inpatients at a hospital with a given diagnosis who underwent associated imaging. Candidate metrics exhibiting temporal stability and internal consistency were included in the final DII. Hospitals were stratified according to the DII, and the relationship between hospital characteristics and DII score was described. Multilevel regression was used to externally validate the index using pre-specified Medicare county-level cost measures, a Dartmouth Atlas measure, and a previously developed hospital-level utilization index.

RESULTS

This novel DII, comprised of eight metrics, correlated in a dose-dependent fashion with four of these five measures. The strongest relationship was with imaging costs (odds ratio of 3.41 of being in a higher DII tertile when comparing tertiles three and one of imaging costs (95 % CI 2.02-5.75)).

CONCLUSIONS

A small set of medical conditions and related imaging can be used to draw meaningful inferences more broadly on hospital diagnostic intensity. This could be used to better understand hospital characteristics associated with low-value care.

摘要

目的

低价值医疗与医疗成本增加及对患者的直接伤害相关。我们试图开发并验证一种简单的诊断强度指数(DII),以量化医院层面的诊断强度,该指数由可能不需要影像学检查的特定临床诊断患者中高级影像学检查的患病率来定义,并描述与高诊断强度相关的医院特征。

方法

我们利用州住院数据库中急性护理医院有一项或多项预定义出院诊断的住院患者数据。我们测量了相关诊断的高级影像学检查的接受情况。候选指标由医院中患有特定诊断并接受相关影像学检查的住院患者比例来定义。表现出时间稳定性和内部一致性的候选指标被纳入最终的DII。根据DII对医院进行分层,并描述医院特征与DII评分之间的关系。使用多水平回归,通过预先指定的医疗保险县级成本指标、达特茅斯地图集指标和先前开发的医院层面利用指数对该指数进行外部验证。

结果

这个由八个指标组成的新型DII与这五项指标中的四项呈剂量依赖性相关。最强的关系是与影像学成本相关(比较影像学成本的三分位数3和1时,处于较高DII三分位数的比值比为3.41(95%CI 2.02 - 5.75))。

结论

一小部分医疗状况及相关影像学检查可用于更广泛地对医院诊断强度得出有意义的推论。这可用于更好地理解与低价值医疗相关的医院特征。

相似文献

1
Development of a disease-based hospital-level diagnostic intensity index.基于疾病的医院层面诊断强度指数的开发。
Diagnosis (Berl). 2024 Apr 22;11(3):303-311. doi: 10.1515/dx-2023-0184. eCollection 2024 Aug 1.
7
Geographic variation in the delivery of high-value inpatient care.高价值住院治疗提供方面的地域差异。
PLoS One. 2019 Mar 25;14(3):e0213647. doi: 10.1371/journal.pone.0213647. eCollection 2019.

本文引用的文献

1
Consequences of preoperative cardiac stress testing-A cohort study.术前心脏应激试验的后果-一项队列研究。
J Clin Anesth. 2023 Nov;90:111158. doi: 10.1016/j.jclinane.2023.111158. Epub 2023 Jul 5.
2
Reducing Overuse by Healthcare Systems: A Positive Deviance Analysis.减少医疗体系过度医疗:正向偏差分析。
J Gen Intern Med. 2023 Aug;38(11):2519-2526. doi: 10.1007/s11606-023-08060-3. Epub 2023 Feb 13.
3
Organization and Performance of US Health Systems.美国卫生系统的组织和绩效。
JAMA. 2023 Jan 24;329(4):325-335. doi: 10.1001/jama.2022.24032.
6
Low-Value Care at the Actionable Level of Individual Health Systems.个体卫生系统行动层面的低价值医疗
JAMA Intern Med. 2021 Nov 1;181(11):1490-1500. doi: 10.1001/jamainternmed.2021.5531.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验