Suppr超能文献

利用人工智能对蛋白质-蛋白质结合界面的空间进行编码。

Encoding the space of protein-protein binding interfaces by artificial intelligence.

机构信息

Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN 37212, USA.

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

出版信息

Comput Biol Chem. 2024 Jun;110:108080. doi: 10.1016/j.compbiolchem.2024.108080. Epub 2024 Apr 18.

Abstract

The physical interactions between proteins are largely determined by the structural properties at their binding interfaces. It was found that the binding interfaces in distinctive protein complexes are highly similar. The structural properties underlying different binding interfaces could be further captured by artificial intelligence. In order to test this hypothesis, we broke protein-protein binding interfaces into pairs of interacting fragments. We employed a generative model to encode these interface fragment pairs in a low-dimensional latent space. After training, new conformations of interface fragment pairs were generated. We found that, by only using a small number of interface fragment pairs that were generated by artificial intelligence, we were able to guide the assembly of protein complexes into their native conformations. These results demonstrate that the conformational space of fragment pairs at protein-protein binding interfaces is highly degenerate. Features in this degenerate space can be well characterized by artificial intelligence. In summary, our machine learning method will be potentially useful to search for and predict the conformations of unknown protein-protein interactions.

摘要

蛋白质之间的物理相互作用在很大程度上取决于其结合界面的结构特性。研究发现,不同蛋白质复合物的结合界面高度相似。不同结合界面的结构特性可以通过人工智能进一步捕捉。为了验证这一假设,我们将蛋白质-蛋白质结合界面分解为相互作用的片段对。我们采用生成模型将这些界面片段对编码到低维潜在空间中。在训练之后,我们生成了新的界面片段对的构象。我们发现,仅使用少量由人工智能生成的界面片段对,我们就能够引导蛋白质复合物组装成其天然构象。这些结果表明,蛋白质-蛋白质结合界面处片段对的构象空间高度简并。人工智能可以很好地描述这个简并空间中的特征。总之,我们的机器学习方法可能有助于搜索和预测未知蛋白质-蛋白质相互作用的构象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验