Kopac Turkan
Department of Chemistry, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye.
Bioengineering (Basel). 2025 Mar 18;12(3):312. doi: 10.3390/bioengineering12030312.
Proteins are essential for all living organisms, playing key roles in biochemical reactions, structural support, signal transduction, and gene regulation. Their importance in biomedical research is highlighted by their role as drug targets in various diseases. The interactions between proteins and nanoparticles (NPs), including the protein corona's formation, significantly affect NP behavior, biodistribution, cellular uptake, and toxicity. Comprehending these interactions is pivotal for advancing the design of NPs to augment their efficacy and safety in biomedical applications. While traditional nanomedicine design relies heavily on experimental work, the use of data science and machine learning (ML) is on the rise to predict the synthesis and behavior of nanomaterials (NMs). Nanoinformatics combines computational simulations with laboratory studies, assessing risks and revealing complex nanobio interactions. Recent advancements in artificial intelligence (AI) and ML are enhancing the characterization of the protein corona and improving drug discovery. This review discusses the advantages and limitations of these approaches and stresses the importance of comprehensive datasets for better model accuracy. Future developments may include advanced deep-learning models and multimodal data integration to enhance protein function prediction. Overall, systematic research and advanced computational tools are vital for improving therapeutic outcomes and ensuring the safe use of NMs in medicine.
蛋白质对所有生物都至关重要,在生物化学反应、结构支撑、信号转导和基因调控中发挥关键作用。它们在各种疾病中作为药物靶点的作用凸显了其在生物医学研究中的重要性。蛋白质与纳米颗粒(NP)之间的相互作用,包括蛋白质冠的形成,会显著影响NP的行为、生物分布、细胞摄取和毒性。理解这些相互作用对于推进NP的设计以提高其在生物医学应用中的疗效和安全性至关重要。虽然传统的纳米医学设计严重依赖实验工作,但数据科学和机器学习(ML)的应用正在兴起,以预测纳米材料(NM)的合成和行为。纳米信息学将计算模拟与实验室研究相结合,评估风险并揭示复杂的纳米生物相互作用。人工智能(AI)和ML的最新进展正在加强对蛋白质冠的表征并改善药物发现。本文综述讨论了这些方法的优点和局限性,并强调了全面数据集对于提高模型准确性的重要性。未来的发展可能包括先进的深度学习模型和多模态数据整合,以增强蛋白质功能预测。总体而言,系统的研究和先进的计算工具对于改善治疗效果和确保NM在医学中的安全使用至关重要。