Claro Amanda Maria, Dias Isabella Karoline Ribeiro, Fontes Marina de Lima, Colturato Vitória Maria Medalha, Lima Lais Roncalho, Sávio Letícia Borges, Berto Gabriela Leila, Arantes Valdeir, Barud Hernane da Silva
Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Rua Carlos Gomes 1217, 14801-340, Araraquara, SP, Brazil.
Laboratory of Applied Bionanotechnology, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil.
Carbohydr Res. 2024 May;539:109104. doi: 10.1016/j.carres.2024.109104. Epub 2024 Apr 17.
Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.
纤维素纳米晶体(CNCs)是从纤维素纤维中分离出来的结晶区域。它们已被广泛应用于各种领域,如增强填料、抗菌剂和生物传感器的制造。在此背景下,本工作的目的是使用两种不同的方法结合研磨预处理来获得并分析从细菌纳米纤维素(BNC)中提取的CNCs:一种是使用64%硫酸的酸性水解,另一种是使用商业纤维素酶混合物的酶水解。从酶促途径获得的CNCs(e-CNCs)被观察为直径为56±11nm的球形纳米颗粒。相比之下,酸水解得到的CNCs(a-CNCs)呈现为具有高纵横比的针状纳米颗粒,长度/宽度为158±64nm/11±2nm。a-CNCs的表面zeta电位(ZP)为-30.8mV,而e-CNCs的电位为+2.70±3.32mV,这表明a-CNCs由带负电荷的颗粒组成,在溶液中具有更高的稳定性。尽管酸性途径得到的纳米晶体的结晶度指数比酶促途径略高,但发现e-CNCs比BNC和a-CNCs具有更高的热稳定性。在这里,我们还使用L929细胞系证实了a-CNCs和e-CNCs的安全性。最后,本文描述了两种不同的CNCs合成方法,它们导致形成具有不同尺寸、形态和独特物理化学性质的纳米颗粒。据我们所知,这是第一项通过BNC酶处理产生球形纳米颗粒的研究。