Wang Yaling, Pan Tiezheng, Li Jie, Zou Lina, Wei Xuewen, Zhang Qian, Wei Tingting, Xu Li, Ulijn Rein V, Zhang Chunqiu
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
ACS Appl Mater Interfaces. 2024 May 1;16(17):22369-22378. doi: 10.1021/acsami.4c00501. Epub 2024 Apr 21.
Enzymes catalyze almost all material conversion processes within living organisms, yet their natural evolution remains unobserved. Short peptides, derived from proteins and featuring active sites, have emerged as promising building blocks for constructing bioactive supramolecular materials that mimic native proteins through self-assembly. Herein, we employ histidine-containing isomeric tetrapeptides KHFF, HKFF, KFHF, HFKF, FKHF, and FHKF to craft supramolecular self-assemblies, aiming to explore the sequence-activity landscapes of enzyme evolution. Our investigations reveal the profound impact of peptide sequence variations on both assembly behavior and catalytic activity as hydrolytic simulation enzymes. During self-assembly, a delicate balance of multiple intermolecular interactions, particularly hydrogen bonding and aromatic-aromatic interactions, influences nanostructure formation, yielding various morphologies (e.g., nanofibers, nanospheres, and nanodiscs). Furthermore, the analysis of the structure-activity relationship demonstrates a strong correlation between the distribution of the His active site on the nanostructures and the formation of the catalytic microenvironment. This investigation of the sequence-structure-activity paradigm reflects how natural enzymes enhance catalytic activity by adjusting the primary structure during evolution, promoting fundamental research related to enzyme evolutionary processes.
酶催化生物体内几乎所有的物质转化过程,但其自然进化过程仍未被观察到。源自蛋白质且具有活性位点的短肽,已成为构建生物活性超分子材料的有前景的构建单元,这些材料通过自组装模拟天然蛋白质。在此,我们使用含组氨酸的异构四肽KHFF、HKFF、KFHF、HFKF、FKHF和FHKF来构建超分子自组装体,旨在探索酶进化的序列-活性图谱。我们的研究揭示了肽序列变异对组装行为和作为水解模拟酶的催化活性的深远影响。在自组装过程中,多种分子间相互作用的微妙平衡,特别是氢键和芳香-芳香相互作用,影响纳米结构的形成,产生各种形态(如纳米纤维、纳米球和纳米盘)。此外,结构-活性关系分析表明,纳米结构上His活性位点的分布与催化微环境的形成之间存在很强的相关性。对序列-结构-活性范式的这一研究反映了天然酶在进化过程中如何通过调整一级结构来增强催化活性,促进了与酶进化过程相关的基础研究。