Kurki Lauri, Oinonen Niko, Foster Adam S
Department of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland.
Nanolayers Research Computing Ltd., London N12 0HL, U.K.
ACS Nano. 2024 Apr 30;18(17):11130-11138. doi: 10.1021/acsnano.3c12654. Epub 2024 Apr 21.
Scanning tunneling microscopy (STM) with a functionalized tip apex reveals the geometric and electronic structures of a sample within the same experiment. However, the complex nature of the signal makes images difficult to interpret and has so far limited most research to planar samples with a known chemical composition. Here, we present automated structure discovery for STM (ASD-STM), a machine learning tool for predicting the atomic structure directly from an STM image, by building upon successful methods for structure discovery in noncontact atomic force microscopy (nc-AFM). We apply the method on various organic molecules and achieve good accuracy on structure predictions and chemical identification on a qualitative level while highlighting future development requirements for ASD-STM. This method is directly applicable to experimental STM images of organic molecules, making structure discovery available for a wider scanning probe microscopy audience outside of nc-AFM. This work also allows more advanced machine learning methods to be developed for STM structure discovery.
使用功能化针尖顶端的扫描隧道显微镜(STM)能够在同一实验中揭示样品的几何结构和电子结构。然而,信号的复杂性使得图像难以解读,迄今为止,大多数研究都局限于化学成分已知的平面样品。在此,我们展示了用于STM的自动结构发现(ASD-STM),这是一种机器学习工具,通过借鉴非接触原子力显微镜(nc-AFM)中成功的结构发现方法,直接从STM图像预测原子结构。我们将该方法应用于各种有机分子,在结构预测和化学识别方面达到了良好的定性精度,同时强调了ASD-STM未来的发展需求。此方法可直接应用于有机分子的实验STM图像,使结构发现适用于nc-AFM之外更广泛的扫描探针显微镜领域。这项工作还为STM结构发现开发更先进的机器学习方法提供了可能。