Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.
J Phys Chem Lett. 2023 Apr 27;14(16):3946-3952. doi: 10.1021/acs.jpclett.3c00460. Epub 2023 Apr 20.
Atomic-scale spatial characteristics of a phthalocyanine orbital and skeleton are obtained on a metal surface with a scanning tunneling microscope and a CO-functionalized tip. Intriguingly, the high spatial resolution of the intramolecular electronic patterns is achieved without resonant tunneling into the orbital and despite the hybridization of the molecule with the reactive Cu substrate. The resolution can be fine-tuned by the tip-molecule distance, which controls the -wave and -wave contribution of the molecular probe to the imaging process. The detailed structure is deployed to minutely track the translation of the molecule in a reversible interconversion of rotational variants and to quantify relaxations of the adsorption geometry. Entering into the Pauli repulsion imaging mode, the intramolecular contrast loses its orbital character and reflects the molecular skeleton instead. The assignment of pyrrolic-hydrogen sites becomes possible, which in the orbital patterns remains elusive.
在扫描隧道显微镜和 CO 功能化尖端的作用下,我们在金属表面上获得了酞菁分子轨道和骨架的原子级空间特征。有趣的是,尽管分子与反应性 Cu 衬底发生了杂化,但仍实现了对分子内电子模式的高空间分辨率,而无需共振隧穿进入轨道。通过针尖-分子距离来精细调节分辨率,从而控制分子探针对成像过程的 -波和 -波贡献。该详细结构可用于精确跟踪分子在旋转变体的可逆互变中的平移,并量化吸附几何形状的弛豫。进入到 Pauli 排斥成像模式后,分子内对比度失去了轨道特征,转而反映了分子骨架。可以对吡咯氢位点进行分配,而在轨道模式中,这一点是难以捉摸的。